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Fall detection is essential for safeguarding the health of elderly persons, enabling timely alerts to family members or the
community. Millimeter-wave (mmWave) radar offers an effective solution, as it is privacy-preserving, non-invasive, and
highly sensitive to motion. However, most existing approaches rely on multi-input, multi-output mmWave radar to generate
4D point clouds or range-angle heatmaps, significantly raising device costs. In this paper, we propose GR-Fall, a fall detection
system with integrated gait recognition designed for indoor environments using single-input, single-output mmWave radar.
To achieve high performance in various environments, we develop a data augmentation algorithm for target heatmaps and
a cross-attention-based heatmap fusion framework for efficient fall detection. Furthermore, we introduce an innovative
fall alarm mechanism based on joint fall-gait detection. This mechanism activates alerts when a person is detected having
difficulty moving after a fall, thus minimizing unnecessary alarms and reducing strain on community resources. To evaluate
GR-Fall, we recruit 33 volunteers and collect 5,799 instances across four different environments. Experimental results show
that GR-Fall achieves 98.1% precision and 98.7% recall in new environments and with new participants, outperforming other
state-of-the-art heatmap-based methods.
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1 INTRODUCTION
Falls are the predominant cause of injury and death in the elderly population (aged 65 and older) in the United
States according to the American Medical Association (AMA) [44]. Furthermore, the Centers for Disease Control
and Prevention (CDC) report that approximately one-third of elders suffer at least one fall each year [37].
Therefore, fall detection plays a crucial role in safeguarding the health of the elderly. By promptly identifying
falls, alerts can be sent to family members or community caregivers, enabling timely medical intervention and
reducing the risk of severe complications.
Many sensors can be used for fall detection, which are typically classified into wearable and non-wearable

device-based systems [48, 69]. Firstly, wearable devices, such as accelerometers [25, 33] and RFID systems [7, 43],
may cause discomfort to users when used for extended periods. Additionally, these systems may fail if elderly
individuals forget to wear or charge the devices. These limitations of wearable technologies can be addressed
by using non-wearable alternatives. For example, camera [2, 14] is often used for fall detection by extracting
features from multiple consecutive frame images. However, it is sensitive to lighting conditions and raises privacy
concerns. Recently, the use of radio frequency (RF) signals, such as Wi-Fi and mmWave, for fall detection [9, 24,
27, 31, 39, 42, 48, 59, 61, 69] have garnered significant attention from researchers due to its non-invasive nature
and privacy-preserving features. Fall detection using Wi-Fi [11, 39, 59, 61] analyzes changes in channel state
information (CSI) to detect falls. However, its performance is susceptible to environmental variations, which limits
its reliability. Moreover, mmWave radar, operating at high frequencies (GHz), stands out among RF-based devices
due to its exceptional range resolution and precise motion detection capabilities [15, 30, 35, 36, 46, 63, 68, 73, 76].
Its ability to measure velocity enables it to effectively distinguish dynamic targets from the static environment,
making it less susceptible to environmental changes. These advantages, combined with its non-invasive nature
and privacy-preserving features, make mmWave radar a highly effective and reliable solution for fall detection.

Current mmWave radar fall detection techniques primarily rely on two types of data: point clouds and heatmaps.
Point cloud-based methods [24, 26, 42, 69, 72] typically use height thresholds or traditional classifiers, such as
Support Vector Machines (SVM), to identify falls. On the other hand, heatmap-based approaches [9, 10, 27, 47, 48]
employ either traditional classifiers (e.g., KNN) or deep neural networks (e.g., CNN) to extract features from
mmWave radar range-angle or range-Doppler heatmaps for fall detection. However, most of these methods
require Multi-Input Multi-Output (MIMO) mmWave radar to generate 4D point clouds or range-angle heatmaps.
This reliance on MIMO technology significantly increases device costs and power consumption, making these
solutions less feasible for large-scale deployment.
Our goal is to design a low-cost fall detection system for indoor environments, leveraging Single Input

Single Output (SISO) mmWave radar, which costs only a quarter of the price of MIMO mmWave radar [18, 20].
However, previous methods have not sufficiently accounted for environmental variations, fall location, or direction
variations. Additionally, the limited information provided by SISOmmWave radar can lead to reduced performance.
Moreover, accurately assessing the severity of falls remains unsolved. Specifically, we highlight the above issues
and system design goals as follows:

• Robust: To reliably ensure personal safety, a fall detection system must be robust, delivering consistent
performance despite variations in environment, fall location, or direction. These factors significantly affect
the heatmap data generated by mmWave radar. However, current heatmap-based approaches [27, 48, 64]
typically use heatmaps as direct input to the fall detection network without accounting for such variability.
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Although these methods often involve collecting fall data across various conditions to improve system
robustness, this process is labor-intensive and challenging to complete comprehensively.

• Accurate: Accuracy is essential for any fall detection system. However, SISO mmWave radar captures
limited data, which can reduce performance when existing methods are applied. Specifically, point cloud-
based approaches [24, 69] depend on 4D point clouds that incorporate a height dimension, while current
heatmap-based techniques [27, 48, 64] typically employ range-angle heatmaps. Since SISO mmWave radar
cannot generate either 4D point clouds or range-angle heatmaps, these methods are not directly applicable
to SISO mmWave radar.

• Practical: Triggering an alarm for every fall is impractical, as not all falls are severe. For instance, in
minor falls where the person is unharmed, triggering an alarm is unnecessary and consumes community
resources. Some studies [48, 69] have proposed assessing fall severity by checking if the person stands up
afterward. However, standing up does not guarantee the person’s safety, as they may still struggle to move
and require medical intervention.

In this paper, we present GR-Fall, a fall detection systemwith gait recognition designed for indoor environments,
utilizing SISOmmWave radar. Given the absence of height information in the point cloud data from SISOmmWave
radar, our approach leverages heatmap data for effective fall detection. GR-Fall offers a low-cost, robust, high-
precision, and practical solution. The system consists of the following core components: (1) The target extraction
module generates environment-independent target heatmaps by integrating clutter and noise filtering, clustering,
and cropping of the Range-Doppler (RD) heatmap. This process effectively isolates the target from the original RD
heatmap, thereby enhancing the robustness of GR-Fall. This process extracts the target’s RD heatmap sequence
(RDSeq) and micro-Doppler (MD) heatmap, which are subsequently used by the following modules. The RDSeq
captures variations in the target’s range and velocity over time through consecutive multi-frame heatmaps, while
the MD heatmap directly reflects changes in velocity over time. (2) In the fall detection module, we begin with
data augmentation that takes into account variations in the location and direction of fall data. This enriched
dataset enhances the robustness of the fall detection network against different fall locations and directions. We
then apply an attention mechanism to extract and fuse features from the target’s RDSeq and MD heatmaps,
fully leveraging information from both heatmap types to improve fall detection accuracy. (3) To further reduce
unnecessary strain on community resources, we propose an alarm mechanism based on joint fall-gait detection.
GR-Fall incorporates gait recognition to assess whether the target resumes normal walking patterns following
a fall. Specifically, it calculates temporal and velocity variations from the MD heatmap as motion features and
uses a Support Vector Machine (SVM) to determine if the person is walking normally. GR-Fall ’s state machine
then integrates outputs from both fall detection and gait recognition, triggering alarms only if normal gait is not
detected following a fall. This design minimizes false alarms and unnecessary responses, ensuring the system is
both reliable and practical.

We implement GR-Fall and deploy it in four distinct environments—a conference room, a break room, an office,
and a living room—to thoroughly evaluate its effectiveness. The study involves 33 volunteers, consisting of 23
males and 10 females. During the experiments, we collect 901 instances of severe falls, 303 instances of non-severe
falls, 952 instances of fall-like behaviors, and 3,643 instances of daily activities to assess GR-Fall’s performance.
The experimental results demonstrate that GR-Fall achieves 98.1% precision and 98.7% recall in new environments
and with new participants, outperforming other state-of-the-art (SOTA) heatmap-based methods [27, 48].
In summary, the main contributions of our GR-Fall can be summarized as follows:

• We propose GR-Fall, a fall detection system with integrated gait recognition for indoor environments using
SISO mmWave radar. Our system introduces a novel fall alarm mechanism that triggers an alert only if
normal gait is not detected following a fall, thereby minimizing strain on community resources.
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• We develop a set of techniques to improve the robustness, accuracy, and practicality of GR-Fall, including
data augmentation for target heatmaps, cross-attention-based heatmap fusion for fall detection, and
velocity-time variation-based gait recognition.

• We implement GR-Fall using commercial off-the-shelf (COTS) mmWave radar and evaluate its performance
on a self-collected dataset spanning four distinct scenarios captured from 33 volunteers. Extensive experi-
mental results demonstrate that GR-Fall achieves 98.1% precision and 98.7% recall in new environments
and with new participants, outperforming other state-of-the-art (SOTA) heatmap-based methods.

2 PRELIMINARY
In this section, we begin by introducing the principles of mmWave radar sensing, with a focus on range and
velocity estimation. Following that, we demonstrate the feasibility of using mmWave radar for fall detection.

2.1 Principles of mmWave Radar Sensing
The mmWave radar can effectively estimate the range and velocity of the target. It typically includes both
transmitting and receiving antennas. The transmitting antenna (TX) sends out multiple chirps, which are reflected
by objects and then captured by the receiving antenna (RX). These transmitted and received signals are mixed to
produce the intermediate frequency (IF) signal. This IF signal is subsequently processed to estimate the target’s
range and velocity. The details of the range and velocity estimation processes are provided below.
Range Estimation. Due to the flight time, a frequency shift occurs between the transmitted and received signals.
Consequently, the frequency of the IF signal (𝑓𝐼𝐹 ) is proportional to the distance (𝑑) between the radar and the
object [21, 28]. The formula for calculating the distance is given by:

𝑓𝐼𝐹 = 𝑆𝜏 =
𝑆2𝑑
𝑐

⇒ 𝑑 =
𝑓𝐼𝐹𝑐

2𝑆
, (1)

where 𝑆 is the slope of the chirp frequency change, 𝜏 is the round trip time, and 𝑐 is the speed of light (3× 108m/s).
Velocity Estimation. For a moving object, the chirp’s phase varies with the range between the radar and the
object. This results in a phase difference (𝜔) between adjacent chirps, which is proportional to the object’s radial
velocity (𝑣), also referred to as Doppler velocity [21, 28]. The formula for calculating the velocity is given by:

𝜔 =
4𝜋 △ 𝑑
𝜆

=
4𝜋𝑣𝑇𝑐
𝜆

⇒ 𝑣 =
𝜆𝜔

4𝜋𝑇𝑐
, (2)

where 𝜆 is the wavelength, and 𝑇𝑐 is the time interval for transmitting multiple chirps.

2.2 Feasibility of Detecting Falls Using mmWave Radar
Motion features, such as velocity, can be extracted from the range-Doppler (RD) heatmap [8] and micro-Doppler
(MD) heatmap [12]. Specifically, building on the range estimation and velocity estimation discussed in Sec. 2.1,
the RD heatmap is generated by performing two Fast Fourier Transform (FFT) on the sampled IF signal (𝐼 ). The
formula for calculating the RD heatmap (𝐻 ) is as follows:

𝐻 =

����𝑁𝐶

𝐹
𝑗=1

(
𝑁𝑆

𝐹
𝑖=1

(𝐼 (𝑖, 𝑗)))
���� , 𝐼 ∈ 𝐶𝑁𝑆×𝑁𝐶 , 𝐻 ∈ 𝑅𝑁𝑅×𝑁𝑉 . (3)

Here, 𝐹 (·) represents the Fast Fourier Transform (FFT), 𝑁𝑆 is the analog-to-digital (ADC) sampling rate, 𝑁𝐶 is
the number of chirps, 𝑁𝑅 is the dimension of range, and 𝑁𝑉 is the dimension of velocity. As illustrated in Fig. 1(a)
and Fig. 1(c), this RD heatmap is presented as a two-dimensional matrix. In this matrix, higher values indicate a
higher probability of detecting a target at specific range and velocity coordinates. By leveraging multi-frame RD
heatmaps, we can effectively distinguish between falls and other human activities, such as walking.
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(a) Continuous three-frame range-Doppler heatmaps of walking (b) micro-Doppler heatmap of walking

(c) Continuous three-frame range-Doppler heatmaps of falling (d) micro-Doppler heatmap of falling

Fig. 1. Comparison of heatmaps of walking and falling. (a) and (c) display continuous three-frame range-Doppler heatmaps
for walking and falling, respectively. (b) and (d) show micro-Doppler heatmaps for walking and falling, respectively.

Furthermore, the MD heatmap can be generated using FFT and Short-Time Fourier Transform (STFT) on the
multi-frame IF signal. This heatmap, represented as a two-dimensional matrix with time and velocity dimensions,
effectively captures variations in the target’s velocity over time. As illustrated in Fig. 1(b) and Fig. 1(d), the
velocity is relatively stable during walking and exhibits a distinct peak during a fall. The MD heatmap can also
help distinguish between falls and other human activities.

3 SYSTEM DESIGN

3.1 Design Goals
To achieve a robust, accurate, and practical fall detection system for indoor environments using SISO mmWave
radar, we have established the following goals for GR-Fall:

• GR-Fall should demonstrate robustness, maintaining consistent performance across different environments,
fall locations, and directions.

• GR-Fall should achieve high precision in fall detection by effectively leveraging multiple heatmaps from
the SISO mmWave radar.

• GR-Fall should provide practicality by activating alarms only for severe falls that significantly impair a
person’s mobility, thereby reducing unnecessary strain on community resources.

3.2 System Overview
To achieve the design goals mentioned above, we propose GR-Fall, a fall detection system with integrated
gait recognition for indoor environments. Leveraging a SISO mmWave radar, GR-Fall provides a cost-effective
alternative to MIMO mmWave radar systems for fall detection. Specifically, GR-Fall can detect falls across various
environments, locations, and directions by employing heatmap-based target extraction and data augmentation
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Fig. 2. GR-Fall includes several key components: target extraction, fall detection, and gait recognition. GR-Fall incorporates
an alarm mechanism based on joint fall-gait detection, triggering an alarm only when the person is unable to walk normally
after a fall. This approach effectively reduces the unnecessary use of community resources.

techniques (discussed in Sec. 3.3 and Sec. 3.4). In addition, GR-Fall harnesses multi-type heatmap data from the
SISO mmWave radar, incorporating an attention mechanism to achieve high precision in fall detection (discussed
in Sec. 3.4). Finally, GR-Fall includes an alarm mechanism based on joint fall-gait detection, integrating gait
recognition to determine if normal walking patterns resume after a fall. An alarm is triggered only when the
person cannot walk normally after falling, thereby minimizing unnecessary strain on community resources
(discussed in Sec. 3.5).

Fig. 2 illustrates the overall architecture of GR-Fall, comprising five components: data collection, target
extraction, fall detection, gait recognition, and a state machine. First, the data collection module captures the IF
signal from the SISO mmWave radar. The target extraction module then processes this signal to generate the RD
heatmap and further extract the target’s RDSeq and MD heatmap through clutter and noise filtering, clustering,
and cropping. In the fall detection module, data augmentation is first applied to expand fall data across various
locations and directions by adjusting target energy intensity and flipping heatmap dimensions. An attention
mechanism is then utilized to extract and fuse features from the RDSeq and MD heatmaps, significantly improving
fall detection accuracy. Subsequently, the gait recognition module extracts motion features by analyzing gait
velocity-time variations from the MD heatmap and employs a Support Vector Machine (SVM) to determine if
normal walking behavior is present. Finally, the state machine module manages state transitions based on the
results of fall detection and gait recognition, triggering an alarm only when a fall is detected and normal gait is
absent. This approach effectively minimizes unnecessary strain on community resources.

3.3 Heatmap-based Target Extraction
In this section, we extract the target’s RD heatmap sequence (RDSeq) and MD heatmap for both the fall detection
(Sec. 3.4) and gait recognition (Sec. 3.5). This is achieved through clutter and noise filtering, clustering, and
cropping to the RD heatmap generated as described in Sec. 2.2. These processes ensure that the fall detection and
gait recognition modules remain robust, consistently performing well regardless of environmental variations.
Further details on this module are provided below.
RD Heatmap Generation. As described in Sec. 2.2, we first apply two FFTs to the mmWave radar IF signal to
generate the RD heatmap. This RD heatmap is a two-dimensional matrix where higher values represent a greater
likelihood of detecting a target at specific range and velocity coordinates. As illustrated in Fig. 3(a), this heatmap
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(a) RD Heamap (b) Clutter Filtering (c) Noise Filtering

(d) Clustering (e) Cropping (f) RDSeq (g) MD Heatmap

Fig. 3. Results from each stage of the heatmap-based target extraction module. This module performs clutter and noise
filtering, clustering, and cropping on the RD heatmap to generate the target’s RDSeq and MD heatmap.

includes dynamic target, static clutter, and background noise. We denote the RD heatmap (𝐻 ) as:

𝐻 = 𝐻𝑑 + 𝐻𝑠 + 𝐻𝑏 . (4)

Here, 𝐻𝑑 represents the dynamic target, 𝐻𝑠 denotes static clutter caused by radar reflections off stationary objects
like walls and the ground, and 𝐻𝑏 refers to background noise, which arises from weak signals generated in areas
without objects, resulting from the radar’s inherent electronic noise. In the following steps, we eliminate the
static clutter and background noise to extract the target from the heatmap.
Clutter and Noise Filtering. We sequentially filter out the static clutter and the background noise from the RD
heatmap (𝐻 ). Firstly, we employ the Moving Target Indication (MTI) algorithm [3] to filter out static clutter (𝐻𝑠 ).
Since stationary targets do not exhibit phase changes between consecutive frames, subtracting adjacent frames
effectively eliminates these stationary targets, effectively retaining the moving target. The formula is given by:

𝐻𝑑+𝑏 (𝑡) = 𝐻 (𝑡) − 𝐻 (𝑡 − 1). (5)

Subsequently, we filter out background noise. During human activity, body velocity follows a continuous
distribution, which is visualized on an RD heatmap by the high intensity of several adjacent Doppler bins. Since
CFAR relies on local reference windows to estimate noise, if numerous bins in the Doppler domain exhibit high
intensities, CFAR will select the bins with the highest intensities as valid points, potentially overlooking other
bins containing velocity information. To address this, we remove weak background noise (𝐻𝑏 ) by applying a
predefined intensity threshold (𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ). After normalizing the heatmap values to a range between 0 and 1,
we set any position in the heatmap that falls below this threshold to zero. In our implementation, 𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is
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empirically set to 0.6. The formula is as follows:

𝐻𝑑 (𝑖, 𝑗) =
{
𝐻𝑑+𝑏 (𝑖, 𝑗), 𝐻𝑑+𝑏 (𝑖, 𝑗) ≥ 𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0, 𝐻𝑑+𝑏 (𝑖, 𝑗) < 𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

, (6)

As illustrated in Fig. 3(b) and Fig. 3(c), we effectively eliminate the static clutter with higher intensity and the
background noise with lower intensity from the RD heatmap.
Clustering and Cropping.We further process the filtered heatmap (𝐻𝑑 ) by clustering and cropping to extract
the target. Firstly, we employ Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [13] to
group data based on density in the range-Doppler space. This identifies dense regions as clusters (targets) and
sparse regions as noise. Subsequently, we identify the position with the highest intensity within each cluster as
the center and crop the area of the heatmap for the target. The formula is given by:

𝑖𝑠𝑡𝑎𝑟𝑡= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖

𝐷 (𝐻𝑑 )𝑖, 𝑗 − 𝑁𝐿/2

𝑖𝑒𝑛𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖

𝐷 (𝐻𝑑 )𝑖, 𝑗 + 𝑁𝐿/2
, 𝐻𝑑 ∈ 𝑅𝑁𝑅×𝑁𝑉 , (7)

𝑅𝐷 (𝑖, 𝑗) = 𝐻𝑑 (𝑖𝑠𝑡𝑎𝑟𝑡 + 𝑖, 𝑗), for 𝑖 = 0 to 𝑖𝑒𝑛𝑑 − 𝑖𝑠𝑡𝑎𝑟𝑡 , (8)
where 𝐷 (·) denotes the DBSCAN clustering process, 𝑖𝑠𝑡𝑎𝑟𝑡 ∼ 𝑖𝑒𝑛𝑑 indicates the cropping range, 𝑁𝑅 represents
the range dimension, 𝑁𝑉 represents the velocity dimension, and 𝑁𝐿 specifies the length after cropping. In our
implementation, we set 𝑁𝐿 = 40. As illustrated in Fig. 3(d) and Fig. 3(e), we cluster to identify the target and then
crop it from the heatmap.
RDSeq and MD Heatmap Generation. Finally, we generate the RDSeq and MD heatmap of the target. We set a
time window and crop all frames within this window based on the cropping parameters from the data of the
first frame. As illustrated in Fig. 3(f), the resulting heatmaps, known as the target’s RDSeq, effectively capture
variations in the target’s range and velocity compared to the first frame of the time window. The sequence is
defined as follows:

RDSeq = {𝑅𝐷𝑖 | 1 ≤ 𝑖 ≤ 𝑁𝑇 } , 𝑅𝐷𝑖 ∈ 𝑅𝑁𝐿×𝑁𝑉 , (9)
where 𝑁𝑇 represents the number of frames in the time window. In our implementation, we set 𝑁𝑇 = 40.

In addition, we sum each frame in the RDSeq along the range dimension and stitch them together in time order
to generate the MD heatmap. As illustrated in Fig. 3(g), the MD heatmap (𝐻𝑀𝐷 ) highlights changes in velocity
over time. The corresponding formula is:

𝐻𝑀𝐷 (𝑖, 𝑗) =
𝑁𝐿∑︁
𝑘=1

𝑅𝐷𝑖 (𝑘, 𝑗), 𝑅𝐷𝑖 ∈ RDSeq, 𝐻𝑀𝐷 ∈ 𝑅𝑁𝑇 ×𝑁𝑉 . (10)

In summary, RDSeq is especially valuable as it captures variations in target range and velocity over time
through consecutive multi-frame heatmaps, while the MD heatmap directly reflects changes in velocity over time.
Both heatmaps respond to the target’s movement and can be effectively leveraged for subsequent fall detection
and gait recognition tasks.

3.4 Cross-attention-based Heatmap Fusion for Fall Detection
After performing heatmap-based target extraction as described in Sec. 3.3, we obtain the target’s RDSeq and
MD heatmap. In this section, we first apply data augmentation to create training sets that encompass various
fall locations and directions, thereby enhancing the robustness of our fall detection network. Next, we employ
an attention mechanism to extract and fuse features from the RDSeq and MD heatmaps, further improving the
precision of fall detection. Further details are provided below.
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(a) Original heatmap (b)Medium-range energy atten-
uation

(c) Long-range energy attenua-
tion

(d) Original heatmap with di-
mension flip

(e) Medium-range energy atten-
uation with dimension flip

(f) Long-range energy attenua-
tion with dimension flip

Fig. 4. Results of data augmentation: (a) shows the original target’s heatmap; (b) and (c) illustrate heatmaps augmented by
range; (d), (e), and (f) depict heatmaps augmented by direction.

Data Augmentation. The robustness of neural networks heavily relies on the quantity and quality of the training
dataset [30]. However, collecting fall data from all possible locations is labor-intensive and challenging to achieve
fully. To overcome this, we propose a data augmentation framework to generate a large volume of effective
training data encompassing diverse fall location variations based on the limited available fall data. As a result,
the amount of data after augmentation is five times greater than before, significantly enhancing the diversity and
effectiveness of the training data.
Firstly, according to the mmWave radar signal power decay equation [41], the power received by the radar’s

receiving antenna is inversely proportional to the fourth power of the target’s range from the radar. Therefore,
for the current fall location data, we can get data for different fall locations by adjusting the corresponding power.
The formula is given by:

𝐻𝐴 (𝑖, 𝑗) = 𝐻 (𝑖, 𝑗) − 10 × 𝑙𝑜𝑔( (𝑑𝑖 + △𝑑)4

𝑑4
𝑖

), 𝐻 ∈ 𝑅𝑁𝑅×𝑁𝑉 , (11)

where𝐻 represents the RD heatmap, 𝑑𝑖 represents the distance between the target located in row 𝑖 of the heatmap
and the radar, and △𝑑 represents a change in distance. The augmented data are illustrated in Fig. 4(b) and Fig. 4(c).

In addition, by flipping the range and velocity dimensions of the heatmap, we can simulate fall data for subjects
facing the radar from the opposite direction, thereby enriching our training dataset. The corresponding formula
is as follows:

𝐻𝐴 (𝑖, 𝑗) = 𝐻 (𝑁𝑅 − 𝑖, 𝑁𝑉 − 𝑗), 𝐻 ∈ 𝑅𝑁𝑅×𝑁𝑉 , (12)

where (𝑁𝑅−𝑖) represents the flip of the range dimension and (𝑁𝑉 − 𝑗) represents the flip of the velocity dimension.
The augmented data are illustrated in Fig. 4(d), Fig. 4(e), and Fig. 4(f).
Attention-based Encoder and Fusion. Both the RDSeq and MD heatmap generated in Sec. 3.3 capture critical
motion features of the target, which are essential for accurate fall detection. As shown in Fig. 5(a), RDSeq
is particularly informative, capturing variations in target range and velocity over time through consecutive
multi-frame heatmaps, consisting of 40 frames in our setup. In contrast, Fig. 5(b) illustrates that the MD heatmap
offers a more intuitive representation by condensing the entire process into a single frame, directly reflecting
changes in velocity over time. To leverage both strengths, we design an attention-based fall detection network
that extracts and fuses features from RDSeq and MD heatmap for precise fall detection. The overview of our
attention-based fall detection network is presented in Fig. 6.
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(a) RD Heatmap Sequence (RDSeq) (b) MD Heatmap

Fig. 5. RDSeq and MD heatmap of the target during a fall. RDSeq effectively captures changes in target range and velocity
over time through multi-frame sequences (40 frames in our setup), while the MD heatmap condenses the entire speed change
process into a single frame, providing an intuitive representation of velocity shifts over time.

We begin by encoding the features of the RDSeq and MD heatmap separately. Since heatmaps are two-
dimensional arrays, 2D CNNs are well-suited for extracting relevant information. For the RDSeq, we use a
pre-trained ResNet-18 [17], excluding the final global pooling and fully connected layers, to extract features
within the range-velocity space of the heatmaps. To capture the temporal information from the multi-frame
data in RDSeq, we further utilize a transformer encoder with an attention mechanism [55] for feature extraction,
denoted as 𝐹𝑅𝐷𝑆𝑒𝑞 . Similarly, to capture the range and temporal information of the MD heatmap (𝐻𝑀𝐷 ), we also
use a pre-trained ResNet-18 [17], supplemented by a multilayer perceptron (MLP), to extract features denoted as
𝐹𝑀𝐷 . The formula is provided below:

𝐹𝑅𝐷𝑆𝑒𝑞 = 𝑇𝐸 (𝐶𝑜𝑛𝑐𝑎𝑡 (𝐻𝐸 (𝑅𝐷1), ..., 𝐻𝐸 (𝑅𝐷𝑛))), 𝑅𝐷𝑖 ∈ RDSeq, (13)

𝐹𝑀𝐷 = 𝑀𝐿𝑃 (𝐻𝐸 (𝐻𝑀𝐷 )), 𝐻𝑀𝐷 ∈ 𝑅𝑁𝑇 ×𝑁𝑉 , (14)
where 𝐻𝐸 (·) denotes the heatmap encoder, 𝑇𝐸 (·) denotes the transofemer encoder, 𝐶𝑜𝑛𝑐𝑎𝑡 (·) represents the
feature vector concatenation, and𝑀𝐿𝑃 (·) represents the multilayer perception.
Additionally, we need to fuse the features extracted from the RDSeq (𝐹𝑅𝐷𝑆𝑒𝑞) and the MD heatmap (𝐹𝑀𝐷 ).

Direct vector concatenation alone is insufficient for effective information transfer between the two data sources.
Inspired by [4], we employ a cross-attention mechanism for feature fusion, allowing comprehensive integration
of information from both feature sets to enhance fall detection accuracy. In the cross-attention process, the query
(𝑄) represents the critical information needed for the current task. During computation, 𝑄 is matched with the
key (𝐾) to identify the most relevant information from another data source, the value (𝑉 ), which contains the
specific information corresponding to 𝐾 . When 𝑄 finds a match with the 𝐾 , the content of 𝑉 is used to respond
to the query, effectively integrating relevant information. A crucial aspect of this approach is the selection of the
𝑄 , 𝐾 , and 𝑉 vectors. In our task, the MD heatmap more directly reflects movement changes while the RDSeq
captures richer movement details. Therefore, we designate 𝐹𝑀𝐷 as 𝑄 and use 𝐹𝑅𝐷𝑆𝑒𝑞 for both 𝐾 and 𝑉 , enabling
𝐹𝑅𝐷𝑆𝑒𝑞 to query relevant information from 𝐹𝑀𝐷 , thereby extracting more efficient information from 𝐹𝑅𝐷𝑆𝑒𝑞 with
the support of 𝐹𝑀𝐷 . The following formula represents the process:

𝑄 = 𝐹𝑀𝐷 , 𝐾 = 𝑉 = 𝐹𝑅𝐷𝑆𝑒𝑞, (15)

Attention(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾
𝑇

√
𝑑𝑘

)𝑉 , (16)
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Fig. 6. The overview of our attention-based fall detection network. It uses an attention mechanism to extract and fuse features
from the RDSeq and MD heatmap to detect falls.

where 1√
𝑑𝑘

represents the scaling factor.
Finally, after fusing the features through a cross-attention mechanism, we apply a linear layer followed by a

softmax function to classify fall and non-fall events.
Loss Function. Due to the collection of fewer fall events compared to non-fall events, resulting in a sample
imbalance in the data, we employed Focal Loss [32] as the loss function. This function can effectively reduce the
impact of easy-to-classify samples on the overall loss and increase the emphasis on those that are difficult to
classify. The formula is as follows:

𝐹𝐿(𝑝𝑡 ) = −𝛼𝑡 (1 − 𝑝𝑡 )𝛾𝑙𝑜𝑔(𝑝𝑡 ), (17)

where 𝛼𝑡 are the weighting factors used to balance the positive and negative samples, and 𝛾 is employed to adjust
the loss function’s focus on samples of varying difficulty.

3.5 Velocity-time Variation-based Gait Recognition
In this section, we recognize the target’s gait using motion features extracted from the MD heatmap generated
in Sec. 3.3. As discussed in [69], focusing on life-threatening falls is essential to conserve precious community
resources. If person can walk normally after a fall, they are either uninjured or capable of seeking help on
their own, making an alarm unnecessary. To this end, we design a gait recognition module in GR-Fall to assess
whether the target resumes normal walking patterns after a fall. Then, our GR-Fall triggers alarms only in cases
of significant falls that impair the person’s ability to walk, thus reducing the unnecessary waste of community
resources. Detailed information is provided below.

Firstly, since the target’s MD heatmap directly reflects changes in velocity over time, we extract the velocity of
the target torso using the percentile method described in [54]. Specifically, this method calculates the weighted
median of target velocities from the MD heatmap to accurately determine the target’s torso velocity. The formula
is provided below:

𝑃 (𝑣, 𝑡) =
∑𝑣

𝑣=𝑣min 𝐻𝑀𝐷 (𝑣, 𝑡)∑𝑣max
𝑣=𝑣min 𝐻𝑀𝐷 (𝑣, 𝑡)

, (18)

where 𝑃 (𝑣, 𝑡) represents the percentile in velocity at 𝑣 and time at 𝑡 , and 𝐻𝑀𝐷 (𝑣, 𝑡) denotes the intensity in
velocity at 𝑣 and time at 𝑡 of the MD heatmap. The torso velocity is determined when 𝑃 (𝑣, 𝑡) = 50%. The target’s
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Fig. 7. Motion features extracted from the MD heatmap in the gait recognition module. The MD heatmap is displayed on
the left, with yellow dots indicating torso velocities, blue dots representing smoothed data, and red pentagons marking peak
velocities on the right.

Fig. 8. The state machine of our GR-Fall consists of three states: normal, fall, and alarm. Here,𝐶 (·) represents the number of
detected frames, while 𝐼 (·) denotes the time interval between two consecutive detected frames. An alarm is triggered by
GR-Fall only if normal gait is not detected after a fall.

MD heatmap (𝐻𝑀𝐷 ) is displayed on the left side of Fig. 7, and the extracted torso velocities are marked by yellow
dots on the right side of the figure.

Furthermore, we employ the Savitzky-Golay filter [45] to smooth the data and utilize the Scipy [56] to identify
the peak velocities of the target’s movement. These peak velocities can be used to construct a motion signature
for gait recognition. The formula for the maximum peak velocity is as follows:

𝑣 [𝑝] > 𝑣 [𝑝 − 1], 𝑣 [𝑝] > 𝑣 [𝑝 + 1], and 𝑣 [𝑝] −min(𝑣 [𝑙], 𝑣 [𝑟 ]) ≥ prommin, (19)

Here, 𝑣 [𝑝] represents the peak velocity, while 𝑙 and 𝑟 denote the lowest valley positions on the left and right
sides, respectively. The parameter prommin is the minimum prominence threshold, which we empirically set to 1.
The minimum peak is calculated similarly. As illustrated on the right side of Fig. 7, the blue dots represent the
smoothed velocity data, while the red pentagon marks the detected peak velocities.
We then calculate the temporal and velocity variations (△𝑡 and △𝑣) between consecutive peaks to construct

the target’s motion features for gait recognition. This can capture variations in the target torso velocity during
movement. The formula is defined as follows:

𝐹 = {𝑣1 − 𝑣0, 𝑡1 − 𝑡0, 𝑣2 − 𝑣1, 𝑡2 − 𝑡1, . . . , 𝑣𝑛 − 𝑣𝑛−1, 𝑡𝑛 − 𝑡𝑛−1} , (20)

where (𝑣0, . . . , 𝑣𝑛) denote the peak velocities, (𝑡0, . . . , 𝑡𝑛) are the corresponding times to these peak velocities, and
𝑛 denotes the number of peaks. Utilizing these motion features, we employ an SVM classifier [5] to determine
whether the target’s gait is normal.
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Fig. 9. The data collection platform of our GR-Fall. In this setup, the radar data is used as input for GR-Fall, while the camera
is utilized solely for labeling the radar data to generate the ground truth.

Finally, we design a state machine based on the results from our fall detection module (Sec. 3.4) and gait
recognition module (Sec. 3.5). Initially set to the normal state, the machine transitions to the fall state if the fall is
detected over 𝑁𝐹 consecutive frames. While in the fall state, if the normal gait is recognized in 𝑁𝐺 consecutive
frames, the machine returns to the normal state; otherwise, it shifts to the alarm state. This approach ensures that
GR-Fall triggers alarms only when normal gait is not detected following a fall, thereby minimizing unnecessary
use of community resources. The state transition process is illustrated in Fig. 8, with the formula given by:

Normal ⇒ Fall: 𝐶 (fall) ≥ 𝑁𝐹 and 𝐼 (fall) ≤ 𝑇𝐹 , (21)
Fall ⇒ Normal: 𝐶 (normal gait) ≥ 𝑁𝐺 and 𝐼 (normal gait) ≤ 𝑇𝐺 , (22)
Fall ⇒ Alarm: 𝐶 (non-normal gait) ≥ 𝑁 ′

𝐺 and 𝐼 (non-normal gait) ≤ 𝑇 ′
𝐺 , (23)

where 𝐶 (·) reprsents the number of detected frames and 𝐼 (·) denotes the time interval between two consecutive
detected frames.

4 IMPLEMENTATION
Our GR-Fall is built on the Infineon’s BGT60TR13C [19], a single-chip mmWave radar. In particular, we utilize
this radar’s one transmitting antenna and one receiving antenna (TX1 and RX1). The TX1 emits radio signals into
the environment, and the RX1 captures the signals reflected by targets. These signals are then mixed to produce
the IF signal, which is sampled and sent to the laptop for further analysis. Furthermore, the radar start and end
frequencies are set to 60.5 GHz and 61.5 GHz, respectively. The number of samples per chirp is set to 128, and the
number of chirps per frame is set to 64. The radar operates at a frame rate of 30 fps. With this configuration, the
mmWave radar system achieves a range resolution of 0.15 m and a velocity resolution of 0.09 m/s.
In addition, our GR-Fall’s fall detection network is implemented by using the PyTorch framework [40]. Our

experimental platform consists of an Intel Core i5-11500 CPU [22] and an NVIDIA GeForce RTX 3060 GPU [38].
On this platform, the training time is 40 minutes per epoch. During training, we set the batch size to 8, use
the Adam optimizer, and initialize the learning rate at 1 × 10−5, which decreases following a cosine annealing
schedule. The training process is conducted over a maximum of 50 epochs. For the loss function, as defined in
Eq. (17), the parameters are set to 𝛼𝑡 = 0.75 and 𝛾 = 2.
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(a) Conference room (b) Break room

(c) Office (d) Living room

Fig. 10. The layout of four experimental scenarios for evaluation: a conference room (7𝑚 × 8𝑚), a break room (3.5𝑚 × 3.5𝑚),
an office (4𝑚 × 5𝑚), and a living room (3𝑚 × 4.5𝑚). The living room contains a dynamic sweeping robot. Red squares indicate
the placement locations of the mmWave radar.

5 EVALUATION

5.1 Experiment Setup

Data Collection. Our data collection platform, shown in Fig. 9, collects data from both the mmWave radar
(Infineon BGT60TR13C [19]) and the camera (Intel RealSense L515 [23]). We ensure time synchronization between
these two sensors, which is crucial for subsequent training and testing. In this configuration, the mmWave radar
data serves as the input for GR-Fall, while the camera images are used exclusively for labeling the radar data to
establish ground truth. This ground truth is essential for GR-Fall’s network training and performance evaluation.
Furthermore, to comprehensively evaluate the performance of our GR-Fall, we deploy it across four distinct

scenarios: a conference room (7𝑚 × 8𝑚), a break room (3.5𝑚 × 3.5𝑚), an office (4𝑚 × 5𝑚), and a living room
(3𝑚×4.5𝑚). The living room contains a dynamic sweeping robot. The layout of each scenario is depicted in Fig. 10.
Notably, our study has received approval from the Institutional Review Board (IRB). We recruit 33 volunteers, 23
males and 10 females, who participate in severe falls, non-severe falls, fall-like behaviors, and daily activities
within each scenario. To ensure the realism of the falling actions performed by the volunteers, we collect a set
of representative fall-related videos [49–52, 65–67] from YouTube and TikTok for them to study and replicate.
Furthermore, the supplementary material includes a video recording that documents the data collection process.
The specific actions performed are as follows:

• Severe falls: Falling patterns include slipping, tripping, losing consciousness, losing balance, and falling
from a chair. Specifically, volunteers remain on the ground for an extended period after falling (over 15
seconds) or pretend to have injured a leg upon getting up, walking with a limp;

• Non-severe falls: The volunteers stand up after falling and walk normally, with the falling patterns being
the same as described above (slipping, tripping, losing consciousness, etc.);

• Fall-like behaviors: These include sitting down, picking up objects, and crouching down to tie shoes;
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(a) Slip (b) Trip (c) Lose consciousness

(d) Lose balance (e) Fall from chair

Fig. 11. Sampled fall patterns in our dataset.

• Daily activities: This category encompasses walking, eating, drinking, sweeping the floor, opening the door,
sitting and playing with a mobile phone, and stretching arms and legs, among others.

Train/Test Split. Our dataset comprises 901 instances of severe falls, 303 instances of non-severe falls, 952
instances of fall-like behaviors, and 3,643 instances of daily activities. In our subsequent experiment, we select
336 sets of fall data, 330 sets of fall-like behavior data, and 1,528 sets of daily activity data from the conference
room scenario for training (Fig. 10(a)). Meanwhile, data from the other three scenarios (Fig. 10(b), Fig. 10(c), and
Fig. 10(d)) are reserved for testing purposes. Additionally, examples of falls from our dataset are shown in Fig. 11.

5.2 Evaluation Metrics
Since fall actions are low-probability events, the fall data in our collected dataset is less frequent than the non-fall
data, which closely mirrors real-life scenarios. Although non-fall data is more abundant, our evaluation metrics
prioritize fall data to ensure that excessive non-fall data does not interfere with our assessment of fall detection
performance. To clarify the metrics, we abbreviate True Positives, False Negatives, True Negatives, and False
Positives as TP, FN, TN, and FP, respectively. Given that falls occur much less frequently than non-fall behaviors
in real-life scenarios, accuracy ( 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 ) is no longer a reliable metric for fall detection. True Negatives
(TN) dominate the calculation as long as the non-fall data are correctly classified, meaning that even if all data are
classified as non-falls, accuracy will remain high. Therefore, we exclude TN from the evaluation metric formula
and focus on fall actions, specifically the ratio of correctly detected falls to all detected falls (precision) and the
ratio of correctly detected falls to the total number of falls (recall).

• Precision: The ratio of correctly detected falls to all detected falls, defined as 𝑝 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 .

• Recall: The ratio of correctly detected falls to the total number of falls, defined as 𝑟 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 .

• F1 Score: The harmonic mean of precision and recall, calculated as 𝐹1 = 2×𝑝×𝑟
𝑝+𝑟 .
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Fig. 12. Impact of the environments (env)
and people (ppl).
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Fig. 14. Impact of the distance.

5.3 Performance of GR-Fall

Overall Performance.We evaluate the overall performance of GR-Fall and compare it to state-of-the-art (SOTA)
heatmap-based methods [27, 48] on our dataset. Specifically, mmFall [27] utilizes a 3D CNN to extract features
from multi-frame range-angle heatmaps, which we apply to the RDSeq due to the lack of angle information
in SISO radar. Similarly, Aryokee [48] employs a 3D CNN to extract features from two types of range-angle
heatmaps, followed by feature concatenation, which we apply to the RDSeq and MD heatmap.

The results presented in Tab. 1 are based on the aforementioned evaluation metrics. Our GR-Fall achieves an F1
Score of 98.4%, a precision of 98.1%, and a recall of 98.7%, demonstrating the best performance among all baselines.
In comparison, the performance of other methods is as follows: mmFall (87.4% F1 Score, 86.4% precision, 88.3%
recall) and Aryokee (92.0% F1 Score, 91.3% precision, 92.8% recall). Their poor performance can be attributed
to the lack of target extraction, as these methods utilize the raw heatmap directly as input to the fall detection
network, making them susceptible to environmental influences. Furthermore, Aryokee simply concatenates the
extracted features, failing to fully leverage the information frommultiple types of heatmaps. Whereas, our GR-Fall
employs clutter and noise filtering, clustering, and cropping to effectively extract targets, ensuring robustness
and consistent performance despite environmental variations (as discussed in Sec. 3.3). Additionally, we utilize an
attention mechanism to extract and fuse features from both the RDSeq and MD heatmap, enhancing the precision
of fall detection (as discussed in Sec. 3.4).
Impact of Different Environments and People. We also analyze the performance of GR-Fall when tested in
the same vs. cross environments and people. The training dataset remains unchanged, consisting solely of data
from the conference room (Fig. 10(a)). The test data, however, includes variations such as new people in new
environments (Fig. 10(b) and Fig. 10(c)), new people in the same environment, same people in new environments,
and same people in the same environment. As shown in Fig. 12, GR-Fall achieves over 98% precision and recall
across all test cases. Specifically, under the cross-people and cross-environment setting, GR-Fall achieves 98.1%
precision and 98.7% recall. If we further change to the same environment, precision and recall improve slightly by

Table 1. Overall performance of GR-Fall.

Method F1 Score Precision Recall

mmFall [27] 87.4% 86.4% 88.3%
Aryokee [48] 92.0% 91.3% 92.8%

GR-Fall 98.4% 98.1% 98.7%
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1.2% and 0.6%, respectively. The results confirm that since GR-Fall works well across environments and people, it
also works well on the same environments and people, and its performance is even slightly higher. This consistent
performance is attributed to our heatmap-based target extraction module (Sec. 3.3), which ensures GR-Fall’s
resilience to environmental changes.
Impact of Different Training Size. To examine the impact of training set size on the GR-Fall, we vary the
training data size from 40% to 100% of the total samples, increasing in 20% increments. Fig. 13 presents the
precision and recall values for fall detection at each training set proportion. The results indicate that when
the training set size increases from 40% to 60%, precision and recall quickly exceed 95%. Beyond a training set
proportion of 60%, the improvement stabilizes. This suggests that by the time the training set reaches 60%, GR-Fall
has already learned the majority of fall-related features.
Impact of Different Distances. We evaluate the performance of GR-Fall at varying distances (2m, 3m, 4m,
5m, and 6m), as shown in Fig. 14. The distance affects the intensity of the reflected signals, with signal strength
decreasing as distance increases. However, thanks to GR-Fall’s data augmentation module during training
(Sec. 3.4), GR-Fall consistently achieves over 97% precision and recall even at greater distances. This demonstrates
the robustness of GR-Fall for varying distances between the radar and the targets. The best performance is
observed at 4 meters, as the radar’s receiving antenna exhibits varying gain levels in different directions, with
the highest gain directly in front of the radar antenna.
Impact of Different Angles.We evaluate the performance of GR-Fall at varying angles (0°, 15°, 30° and 45°),
as shown in Fig. 15. Influenced by the radar beam’s directionality and the presence of sidelobes, the energy of
radar signals varies at different angles, attenuating significantly as the angles increase. The experimental results
demonstrate that GR-Fall consistently achieves over 97% precision and recall, even at larger angles. The best
performance occurs at 0°, where the radar directly faces the target.
Impact of Different Heights.We evaluate the performance of GR-Fall at different heights (1.9m, 2.1m, 2.3m,
and 2.5m), as illustrated in Fig. 16. The radar’s height primarily affects its sensing area, which is smaller at
lower heights. The experimental results show that GR-Fall maintains a precision of over 97% across all heights.
Moreover, as the height increases to 2.1m, the recall of GR-Fall exceeds 97%, attributed to the expanded sensing
area. These results demonstrate GR-Fall’s robustness to variations in radar height.
Sensing Coverage. The sensing coverage of the mmWave radar depends on its sensing distance, field of view
(FOV), and placement configuration. Our experimental results (Fig. 14, Fig. 15, and Fig. 16) show that our GR-Fall
achieves a sensing range of 6m with a FOV of ±45◦. When mounted at a height of 2.5m and tilted diagonally
downward, it covers a square area on the ground with a side length of 4.5m, enabling effective coverage in typical
indoor environments such as the bedroom, study, and living room.
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Fig. 17. Impact of the sample duration.
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Fig. 18. Impact of the crop range.

Fig. 19. Impact of the consecutive frames on detecting falls. The precision and recall of GR-Fall exceed 98% when the number
of consecutive frames is set to 8.

Impact of Different Sample Duration. To investigate the impact of sample duration (𝑁𝑇 ) on the performance
of GR-Fall, we conduct experiments using sample sizes of 10, 20, 30, 40, and 50 frames. A smaller 𝑁𝑇 may result in
insufficient data, while a larger 𝑁𝑇 can lead to delayed responses. Thus, selecting an optimal sample duration is
crucial. The results, illustrated in Fig. 17, indicate that performance increases with the addition of frames, which
also extends the response time. Especially, the improvement in both precision and recall when transitioning from
40 to 50 frames is minimal, at less than 1%. Therefore, we set the sample duration to 40 frames in GR-Fall to
balance the performance and response time.
Impact of Different Crop Ranges. To investigate the impact of crop range (𝑁𝐿) on the performance of GR-Fall,
we conduct experiments with crop ranges of 20, 30, 40, 50, and 60. As shown in Fig. 18, the system performs best
when 𝑁𝐿 is set to 40. This is because, as 𝑁𝐿 increases from 20, it captures progressively more information about
the target, leading to improved performance. However, when 𝑁𝐿 exceeds 40, the percentage of the target in the
heatmap decreases, causing a decline in performance.
Impact of Different Consecutive Frames on Detecting Falls. As GR-Fall’s state machine transitions to the
fall state upon detecting a fall in 𝑁𝐹 consecutive frames, selecting an appropriate value for 𝑁𝐹 is critical. A small
𝑁𝐹 can lead to a high false alarm rate, while a large 𝑁𝐹 may result in missed alarms and delayed responses. As
illustrated in Fig. 19, we calculate the precision and recall of GR-Fall for various values of 𝑁𝐹 . When 𝑁𝐹 increases
from 8 to 9, precision improves only slightly, while recall decreases more significantly. Therefore, we choose
𝑁𝐹 = 8, achieving a precision of 98.1% and maintaining a high recall of 98.7%.
Impact of Different Consecutive Frames on Recognizing Gaits. As GR-Fall’s state machine transitions to the
alarm state after detecting non-gait in 𝑁𝐺 consecutive frames, choosing an appropriate value for 𝑁𝐺 is essential.
A smaller 𝑁𝐺 could lead to more false gait recognitions, while a larger 𝑁𝐺 might result in missed recognitions and
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Fig. 20. Impact of the consecutive frames on recognizing gaits. The precision exceeds 98% and recall reaches 100% when the
number of consecutive frames is set to 6.

Fig. 21. Occlusion of different objects.

Fig. 22. Impact of object occlusion on heatmap data. When an object partially obstructs the radar’s view, the radar is unable
to capture motion data as the person approaches the ground during a fall, as most of the body is obscured during this period.

delayed responses. We evaluate gait recognition performance across various 𝑁𝐺 values, as shown in Figure 20.
With 𝑁𝐺 set to 6, the system achieves a 100% recall in recognizing gaits. Therefore, we conclude that 𝑁𝐺 = 6 is
an optimal threshold, as it maintains 100% recall while keeping the false alarm rate below 2%.
Impact of Object Occlusion. As shown in Fig. 21, we further assess GR-Fall’s performance in environments
with object occlusion, involving obstacles like tables, chairs, and similar items. Fig. 22 presents the target MD
heatmap with and without occlusion at the same location. When an object partially obstructs the radar’s view,
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(a) Fall in the presence of another person. (b) RD Heatmap. (c) MD Heatmap.

(d) Chair tipping over. (e) Cabinet door opening. (f) Object dropping.

(g) Dynamic environment. (h) Fall in the dynamic environment.

Fig. 23. Impact of dynamic environments. When another moving person is present, as illustrated in (a), GR-Fall’s target
extraction module independently extracts data for each target, effectively distinguishing between different objects, as shown
in (b). The data corresponding to the fall target remains unaffected, as depicted in (c). Additionally, (d), (e), and (f) illustrate
dynamic changes within the environment, such as a chair tipping over, a cabinet door opening, and an object dropping.
Moreover, as shown in (g) and (h), the dynamic environment includes two users, a sweeping robot, and a pet.

the radar is unable to capture motion data as the person approaches the ground during a fall, as most of the body
is obscured during this period. Nonetheless, our system continues to detect falls accurately based on heatmap
data, even when information is incomplete. Experimental results indicate that GR-Fall achieves an F1 score of
97.7%, a precision of 97.2%, and a recall of 98.1%, highlighting its robustness in occluded environments.
Impact of Dynamic Environments. Elderly falls may occur in dynamic environments. To evaluate GR-Fall’s
performance under such conditions, we evaluate it in scenarios involving environmental changes, such as a
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chair tipping over, a cabinet door opening, and an object dropping, as illustrated in Fig. 23(d), 23(e), and 23(f).
In addition, we also evaluate its robustness in the presence of other moving objects within the room, such as a
sweeping robot, a pet, or people, as illustrated in Fig. 23(g).
As shown in Fig. 23(a), when another moving person is present, GR-Fall’s target extraction module (Sec. 3.3)

independently extracts data for each target, ensuring accurate detection for all targets. Fig. 23(b) illustrates that
the yellow region corresponds to the fall target, while the blue region corresponds to another target. Furthermore,
Fig. 23(c) demonstrates that the fall target’s MD heatmap remains unaffected. Experimental results show that
GR-Fall achieves an F1 score of 97.2%, a precision of 97.8%, and a recall of 96.7%. Observations indicate a slight
performance decrease due to the moving human body obstructing the line of sight between the radar and the
faller. Nevertheless, the system consistently maintains good performance in dynamic environments.
Realistic Fall Simulations by Actors. To further enhance the realism of the collected data, we invite five
experienced actors from the university’s acting club to study and replicate real-world falls. Each actor specializes
in simulating a specific type of fall—slipping, tripping, losing consciousness, losing balance, or falling from
a chair—based on fall videos sourced from YouTube and TikTok [49–52, 65–67]. Using the pre-trained model,
the newly collected actor data is used exclusively for testing. Experimental results demonstrate that GR-Fall
consistently maintains good performance, with an F1 score of 97.7%, a precision of 98.1%, and a recall of 97.2%.
Ablation Study. GR-Fall consists of three key components: target extraction, fall detection, and gait recognition.
After clutter filtering, clustering, and cropping, the target extraction module processes the IF signal to generate
the target’s RDSeq and MD heatmap. The fall detection module begins with data augmentation to expand the
fall data and then uses a cross-attention mechanism to fuse features from RDSeq and MD heatmap for accurate
fall detection. The gait recognition module extracts gait velocity-time variation as motion features from the MD
heatmap and employs an SVM to determine if the user is walking normally. To assess the effectiveness of each
component, we validate our GR-Fall by ablating specific components:

• W/O Target Extraction: It refers to skipping the target extraction process, using the original RD heatmap
directly as input for subsequent modules.

• W/O Data Augmentation: It refers to training the model solely with the collected data, without applying
any data augmentation techniques.

• W/OMDHeatmap: It refers to the removal of only the network branch responsible for extracting features
from the MD heatmap.

Table 2. Ablation study of GR-Fall.

Method F1 Score Precision Recall

W/O Target Extraction 93.3% 93.9% 92.7%
W/O Data Augmentation 94.9% 96.0% 93.8%

W/O MD Heatmap 94.8% 94.9% 94.8%
W/O RDSeq 94.5% 93.4% 95.8%

W/O Cross-Attention 95.2% 96.3% 94.3%
W/O Gait Recognition 82.5% 70.6% 99.4%

GR-Fall 98.4% 98.1% 98.7%
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• W/O RDSeq: It refers to the removal of only the network branch responsible for extracting features from
the RDSeq data.

• W/O Cross-Attention: It refers to replacing the network’s attention mechanism for feature fusion with a
simple concatenation of feature vectors.

• W/O Gait Recognition: It refers to the approach of immediately raising alarms upon detecting a fall,
without assessing the severity of the fall.

The experimental results are presented in Tab. 2. Specifically, when target extraction is omitted, environment-
independent target heatmaps cannot be obtained, resulting in more missed detections under changing conditions
and a significant decrease in recall. Similarly, without data augmentation, the model lacks diverse fall data for
training, reducing both robustness and overall performance. Furthermore, using a single heatmap or merely
concatenating two heatmap features yields lower performance compared to attention-based feature fusion.
Without gait recognition, distinguishing between severe and non-severe falls becomes impossible, causing
non-severe falls to trigger false alarms and reducing precision. Consequently, our system integrates all these
components to achieve optimal performance.

6 RELATED WORK
In this section, we review related work on fall detection, with a focus on both sensor-based and mmWave-based
approaches. Detailed information is provided below.

6.1 Sensor-based Fall Detection
Fall detection systems can be categorized into wearable and non-wearable device-based [69]. Wearable systems
include those using accelerometers [25, 33], RFID [7, 43], and similar devices [1, 53]. However, prolonged wear may
cause discomfort to the user, and these systems may fail if the user forgets to wear or charge them. The limitations
of wearable technologies can be addressed by using non-wearable alternatives. For example, camera [2, 14] is often
used for fall detection by extracting features from multiple consecutive frame images. However, it is sensitive to
lighting conditions and raises privacy concerns. In addition, WiFi-based fall detection methods [11, 39, 59, 61]
offer non-invasive and privacy-preserving solutions. They detect falls by analyzing variations in channel state
information (CSI). However, their effectiveness is significantly affected by environmental dynamics.

6.2 mmWave-based Fall Detection
The mmWave radar operates using high-frequency RF signals (GHz), making it non-invasive, privacy-preserving,
and capable of providing high-range resolution and accurate motion detection [16, 29, 30, 46, 62, 63, 68, 71, 73].
Recent advancements in mmWave radar technology have significantly enhanced human sensing capabilities [6,
34, 57, 58, 60, 70, 74, 75]. Current mmWave radar fall detection techniques primarily utilize two types of data:
point clouds and heatmaps.
The first approach to fall detection utilizes mmWave radar point clouds. Jin et al. [24] detect falls using a

hybrid variational RNN autoencoder based on human body point clouds. Kittiyanpunya et al. [26] employ an
LSTM model to detect falls using point cloud data and Doppler velocity. Zhang et al. [69] propose a two-stage
fall detection system that identifies life-threatening falls by continuously monitoring the body’s state after a
fall. The second approach to fall detection utilizes mmWave radar heatmaps. Tian et al. [48] use a CNN and a
state machine to detect falls based on range-angle heatmaps. Ding [10] employs KNN to extract features from
range-Doppler heatmaps for fall detection. Sun et al.[47] leverage an LSTM to detect falls based on range-angle
heatmaps. Li et al. [27] use a 3D CNN to detect falls based on range-angle heatmaps. However, most of these
methods require MIMO mmWave radar, which leads to increased device costs and higher data transmission
volume, making it less favorable for large-scale deployment of the equipment.
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In contrast, we propose GR-Fall, an mmWave-based fall detection system with integrated gait recognition
designed for indoor environments By utilizing a low-cost SISO mmWave radar, GR-Fall offers a more economical
alternative to MIMO radar systems [18, 20]. To ensure robustness, accuracy, and practicality, our system incorpo-
rates several key components: target extraction, fall detection, and gait recognition. Importantly, GR-Fall triggers
an alarm only when both a fall is detected and normal gait is absent, effectively reducing unnecessary strain on
community resources.

7 DISCUSSION

Hardware Support. Our GR-Fall is built on Infineon’s BGT60TR13C [19]. Specifically, we utilize the radar’s
single transmitting antenna (TX1) and single receiving antenna (RX1). The range and velocity resolutions of the
mmWave radar are determined by its bandwidth and frame duration, respectively [41, 69]. Consequently, this
radar configuration can also be applied to other SISO radars, such as Infineon’s BGT60UTR11AIP [18], to achieve
comparable range and velocity resolutions as well as overall performance.
Computational Overhead. Since the GPU may be less suitable for deployment due to its high cost, we utilize it
solely during the training phase before deployment to accelerate model development. During actual deployment,
inference is carried out on the CPU to reduce costs. Specifically, we evaluate the runtime of GR-Fall on the Intel
Core i5-11500 CPU [22], where the processing time is 80 ms—equivalent to 12 fps—enabling the proposed system
to achieve real-time fall detection.
Potential Application. GR-Fall’s technologies have promising applications in smart homes, health monitor-
ing, and related fields. For example, the attention-based heatmap feature extraction and fusion technique can
be extended to other perception tasks, such as gesture recognition and pose estimation, by integrating data
from multiple heatmaps. Additionally, the velocity-time variation-based gait recognition can be leveraged for
applications like user authentication.
Limitations and Future Work. GR-Fall covers a square area with a side length of 4.5m, ensuring effective
coverage in typical indoor environments such as bedrooms, studies, and living rooms. However, the sensing
range of a single radar may be limited in larger spaces, leading to the potential failure to detect targets outside
this range. Deploying multiple radars offers a practical solution to this limitation. In future work, we plan to
explore methods for integrating multiple radars to achieve seamless and comprehensive coverage.

8 CONCLUSION
In this paper, we propose GR-Fall, a fall detection system with integrated gait recognition, designed for indoor
environments. Leveraging a SISO mmWave radar, GR-Fall provides a cost-effective alternative to MIMO radar
systems. GR-Fall introduces an innovative fall alarm mechanism that triggers alerts only if normal gait is not
detected after a fall, effectively reducing strain on community resources. The system integrates several key
components: heatmap-based target extraction, cross-attention-based heatmap fusion for fall detection, and
velocity-time variation-based gait recognition, delivering robustness, high accuracy, and practicality. To evaluate
GR-Fall, we recruit 33 volunteers and collect 5,799 instances across four different environments. Experimental
results demonstrate that GR-Fall outperforms state-of-the-art methods, particularly in new environments and
with new participants.
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