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ABSTRACT

A crucial task in autonomous driving is to continuously de-
tect nearby vehicles. Problems thus arise when a vehicle is
occluded and becomes “unseeable”, which may lead to acci-
dents. In this study, we develop mmOVD, a system that can
detect fully occluded vehicles by involving millimeter-wave
radars to capture the ground-reflected signals passing be-
neath the blocking vehicle’s chassis. The foremost challenge
here is coping with ghost points caused by frequent multi-
path reflections, which highly resemble the true points. We
devise a set of features that can efficiently distinguish the
ghost points by exploiting the neighbor points’ spatial and
velocity distributions. We also design a cumulative cluster-
ing algorithm to effectively aggregate the unstable ground-
reflected radar points over consecutive frames to derive the
bounding boxes of the vehicles.

We have evaluated mmOVD in both controlled environ-
ments and real-world environments. In an underground
garage and two campus roads, we conducted controlled ex-
periments in 56 scenes with 8 vehicles, including a minibus
and a motorcycle. Our system accurately detects occluded
vehicles for the first time, with a 91.1% F1 score for occluded
vehicle detection and a 100% success rate for occlusion event
detection. More importantly, we drove 324km on crowded
roads at a speed up to 70km per hour and show we could
achieve an occlusion detection success rate of 92% and a low
false alarm rate of 4% with only 10% of the training data in
complex real-world environments.
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1 INTRODUCTION

In autonomous/assisted driving, it is necessary to continu-
ously detect and track neighboring vehicles. However, fre-
quent occlusions between vehicles can cause the target ve-
hicle to disappear, disrupting the tracking process [16, 53].
Specifically, when multiple vehicles are driving in parallel,
a blind zone appears in the visual field of typical vehicle-
mounted sensors (e.g., cameras or LIDARs), as illustrated in
Figure 1. Such a blind zone can result in the disappearance
of a target, impeding target tracking and path planning, and
potentially causing hazards during maneuvers such as over-
takes, lane changes, or turns. According to the latest data
in the Traffic Safety Facts of the National Highway Traffic
Safety Administration (NHTSA) of the United States, about
1,584 fatal accidents were attributed to blind zones in the US
in 2021 [23]. Therefore, timely and accurate vehicle detection
in occluded scenarios holds tremendous significance in en-
hancing the safety of autonomous/assisted driving systems.

Currently, there have been several attempts to address
this challenge, all of which assume popular car-installed
sensors such as cameras or LiDAR sensors. Some studies
use camera-based or LiDAR-based detection algorithms to
segment potentially occluded regions of interest and then use
a combination of prior knowledge, deep learning, and other
methods to identify the presence of occlusion [53]. Some
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Figure 1: Illustration of the detection blind zone caused
by the occlusion problem

studies take advantage of a vehicle’s distinctive appearance,
such as the windscreen, to detect vehicles in occlusion [39].
However, these methods can only help in partially-occluded
cases with a large portion of the occluded car in sight. To
the best of our knowledge, there has been no system that
can detect fully or mostly occluded targets.

To address this void, we propose to utilize a less explored
sensor, millimeter-wave radar [3, 32] (mmWave radar, in
short) for occlusion detection. The mmWave radar, due to
its high ranging accuracy, compact size, and low power con-
sumption, has recently received an increasing amount of
attention in the research community for detection, local-
ization and communication [6, 7, 13, 21, 33, 50, 51]. Many
public datasets for autonomous driving (e.g., nuScences[5])
have also adopted mmWave radars as one of the supple-
mentary sensors. Millimeter waves, operating at GHz levels,
reflect off surfaces as they propagate, resulting in changes
to the propagation path. This is known as the multi-path
effect [18, 26, 40, 41], which has been well-studied for other
frequency bands(e.g., [11, 30, 34] for WiFi, and [42-44] for
RFID) by the community.

In our setting, the multi-path effect can be viewed as a
unique advantage of millimeter waves, enabling us to achieve
non-line-of-sight detection. For example, radar signals that
reflect off the ground [29] under the blocking vehicle gener-
ate a mirror target, which can be used to detect the occluded
vehicle (as shown in Figure 2). This feature of millimeter
waves allows us to detect objects in the occlusion zone that
are not visible with traditional line-of-sight sensors. How-
ever, the multi-path effect also causes problems. Besides the
ground, millimeter waves reflect off other moving vehicles
as well. As such, when vehicles are driving close to each
other, the waves can reflect multiple times between them,
resulting in severe ghost signals [25, 27] which may lead to
false alarms. The ghost signals generate ghost points which
exhibit similar signal intensity and location to the true points
from occluded vehicles, making them hard to discriminate.
Additionally, since the non-line-of-sight detection relies on
the signals after an indirect reflection path, the resulting
signals are weak and unstable, making it difficult to detect
the occluded vehicles accurately.
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Figure 2: Occluded vehicle detection through ground-
reflected mmWave signals.
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This paper presents mmOVD, an occluded vehicle detec-
tion system based on mmWave radar. Initially, we generate
radar point clouds using mmWave signals. The raw point
clouds contain a large amount of noise, including the chal-
lenging ghost points. To eliminate the ghost points, the key
lies in a well-designed feature set that can effectively discrim-
inate them from the true points. Existing works [15, 25] focus
on an individual point’s properties, such as its signal strength
and Doppler velocity, but we find their discriminative power
is limited in our case. Instead, we examine a point’s neighbor-
hood and find that these two types of points have drastically
different spatial and velocity distributions in the neighbor-
hood. For example, a true point’s neighbor point density
is considerably higher than that of a ghost point; halfway
between the radar and a ghost point, we often observe a
cluster of points while this does not apply to true points; a
true point’s neighbor velocities (not the Doppler velocity)
often exhibit similar trends while a ghost point’s neighbor
velocities are more chaotic. Based on these observations, we
have carefully devised a set of neighborhood behavior-based
point features. In addition, we can further enhance these
features’ robustness by exploring the temporal and spatial
dimensions - e.g., a true point also has more neighbors in
the previous frame or the neighbor radar’s frame.

Further, to combat the challenge caused by the relatively
unstable radar points from occluded vehicles, we propose
a conservative clustering, cumulative aggregation approach.
Specifically, we first perform conservative clustering to ob-
tain point clusters that are small and possibly incomplete.
We then accumulate these raw clusters from multiple frames
and aggregate them into more complete clusters. In this way,
we can accurately extract the bounding box of each vehicle
and detect whether there is occlusion based on the spatial
relationship of these boxes.

In summary, our work makes the following contributions:

e We have designed and prototyped an occluded vehicle
detection system, mmOVD, which leverages mmWave radars
to detect vehicles even in fully occlusion scenarios. To the
best of our knowledge, this is the first system that can accu-
rately detect fully occluded vehicles (including motorcycles).

e We devised a set of neighborhood spatial- and velocity
distribution-based point features, which can be used to iden-
tify the ghost points in any vehicle detection/tracking system
with mmWave radars. We have also designed a new detec-
tion system that can effectively cope with unstable radar
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signals reflected from the occluded vehicle by adopting a
conservative clustering, cumulative aggregation approach.

e We have evaluated mmOVD in great depth in controlled
settings and through actual long-distance driving. In con-
trolled settings, we conducted extensive experiments with
8 different vehicles, including a minibus and a motorcycle,
in an underground garage and on two campus roads. The
results show that mmOVD achieves an average accuracy
of 94.2% for point classification, an F1 score of 91.1% for
occluded vehicle detection, and a success rate of 100% for
occlusion event detection with a false alarm rate lower than
5% in our dataset. Additionally, we drove 324km on crowded
roads (most roads with a speed limit of 60km/h or 80km/h) at
a speed up to 70km/h. The results demonstrate that mmOVD
can achieve an occlusion detection success rate of 92% and a
low false alarm rate of 4% with only 10% of the training data
in complex real-world environments.

2 BACKGROUND

2.1 mmOVD: Using mmWave to Detect
Occluded Targets

The mmWave radars have been increasingly used for de-
tecting nearby vehicles in recent years. Typical automotive
mmWave radars operate with a sequence of linear frequency-
modulated continuous-wave (FMCW) signals to detect ob-
jects. The antennas on radar transmit and receive FMCW sig-
nals continuously. Then a frequency mixer and a low-pass fil-
ter are used to combine the signals and produce intermediate
frequency (IF) signals. With the IF signals of different anten-
nas, we can obtain the distance, Doppler velocity, and angle
of each object through fast Fourier transform (FFT) [46].

Benefiting from the nature of electromagnetic waves, the
reflection on smooth surfaces enables mmWave radar to
achieve non-line-of-sight detection. This concept has been
explored in other settings, including the detection of targets
around corners in [1, 2, 9, 24, 52]. As signals can bounce off
walls, the radar can detect objects hidden behind a corner.
By taking into account the geometric structure of the walls,
the locations of these hidden objects can be determined.

In this work, we utilize the reflection off the ground, which
is the most common and stable reflecting surface in automo-
tive environments, to detect occluded vehicles. This is the
underlying motivation for the design of mmOVD. Nonethe-
less, the complexity of automotive environments has brought
serious challenges to our system design.

2.2 Challenges in Designing mmOVD

Our mmOVD system has two main objectives: (1) to avoid
false alarms when no occluded vehicle is present and (2)
to accurately detect occluded vehicles. However, achieving
these goals is challenging. By conducting motivation studies
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Figure 3: (a) Signals bounce between the vehicles, cre-
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Figure 4: Radar points from an occluded vehicle in 8
consecutive frames (30 FPS), in which the black boxes
represent the vehicle’s bounding boxes.

in both static and driving scenarios, we identify two main
challenges as follows. Firstly, although we can detect hid-
den vehicles through ground reflections, interference from
other reflectors in the environment complicates distinguish-
ing between real vehicles and ghosts. Secondly, the dynamic
movements of vehicles and constantly changing signal prop-
agation paths further increase the complexity of the problem.
Below we explain these challenges in more detail.

False Alarm Due to Ghost Points: Vehicles are effective
reflectors of mmWave signals as they are primarily made of
metal and reinforced plastics. When vehicles drive closely
together, millimeter waves bounce back and forth between
them (Figure 3(a)). The signals after one back-and-forth re-
flection generate the true points, while those after two or
more reflections create “ghost points”, which might trigger
false alarms. For instance, several ghost clusters appear (Fig-
ure 3(b)) due to multiple reflections. Ghost points typically
exhibit similar signal intensity to true points and appear in
locations where occluded vehicles may be present, making
the elimination of ghost points an essential challenge.

Inaccurate Detection due to Unstable Radar Points:
In occlusion scenarios, mmWave radar indirectly detects oc-
cluded vehicles through ground reflections, causing unstable
points due to changing signal propagation paths as vehicles
move. Figure 4 illustrates the radar points from an occluded
vehicle over eight consecutive frames (at 30 FPS), where
the black boxes represent the vehicle’s bounding boxes. The
radar points are rather unstable, appearing at different po-
sitions on the vehicle’s body, and sometimes even forming



ACM MobiCom 24, November 18-22, 2024, Washington D.C., DC, USA

Signal Pre-processing

Two-phase FFT ;
‘ 1
CA-CFAR Detection |

Neighbor
Density

T \ i ghost points
l( l Azimuth Estimation !

N5 J

= = :

RadarZ’:\ " Radarl
Radar
Signal

Raw
Points Point

Features

He et al.
Ghost Removal Vehicle Detection
Feature Extraction i Per-frame Point Clustering
Halfway Neighbor i ¥
Point Density Velocity Distribution i Cross-Frame
- f .
RN Aggregation
ghost points !
i a] Match Occlusion
et T l =
0 =] EN
true points T Aggregate,
2 [oteanse | .|
e ¥ Radar

Figure 5: The mmOVD system involves the three main steps: (1) signal pre-processing, (2) ghost removal, and (3)

vehicle detection.

several separate point clusters. Consequently, applying typi-
cal radar point clustering algorithms (e.g., DBSCAN [14]) can
lead to significant positioning errors and even erroneously
divide a single vehicle into multiple targets.

In this study, we have carefully devised algorithms to
address the above challenges. By utilizing the neighborhood
spatial/velocity features of radar points, we can effectively
classify the points and eliminate ghosts. We also propose a
cross-frame cumulative aggregation-based vehicle detection
algorithm to accurately detect the occluded vehicles.

3 MMOVD DESIGN

3.1 Overview

Figure 5 depicts the overview of our mmOVD system, which

consists of the following components:
(1) Radar Signal Pre-processing: The received mmWave

signals first go through the range measurement and veloc-
ity measurement processes. We then use a constant false
alarm rate (CFAR) algorithm to generate point clouds.
These points consist of true points (i.e., those from re-
flections from actual targets) and noise points (i.e., those
include ghost points and background noises).

(2) Neighborhood Spatial/Velocity-Based Ghost Re-
moval: In the raw point clouds, ghost points are the
dominant noises and the most challenging to eliminate.
By thoroughly examining the characteristics of radar
points, we propose neighborhood spatial features and
velocity distribution features to eliminate ghost points.

(3) Cross-Frame Cumulative Aggregation-Based Vehi-
cle Detection: After removing ghost points, we need to
detect vehicles from the point clouds. We first perform
conservative clustering to get raw clusters of vehicles. We
then propose a cumulative aggregation approach, which
accumulate the incomplete clusters from multiple frames
to achieve accurate detection for occluded vehicles.

3.2 Radar Placement and Radar Signal
Pre-processing

The first consideration is the placement of radar sensors
on the sensing vehicle. When relying on a single radar for

(a) Single radar (b) Two radars
Figure 6: (a) A single radar may lead to a large blind
zone since the mmWave signals can be significantly
obstructed by the tires of the blocking vehicle. (b) Hav-
ing two or more radars can greatly alleviate the blind
zone problem due to their complementary coverage.

detection, the propagation of mmWave signals may be sig-
nificantly obstructed by the tires of the blocking vehicle,
resulting in a substantial blind zone. Figure 6(a) shows such
an example. By installing two (or more) radars on each side
of the sensing vehicle, their fields of view can complement
each other (as shown in Figure 6(b)). Our experiments indi-
cate that installing two radars on each side of the vehicle
and merging their data can significantly increase detection
accuracy by over 20% compared to using only one radar.
However, using three radars does not produce a significant
gain, with detection accuracy only improving by 1.2% over
using two radars. Hence, in designing mmOVD, we assume
there are two radars on each side of the vehicle, and we can
readily extend the system design to accommodate cases with
more radars. Notably, to ensure the radars’ fields of view are
not simultaneously obstructed by the blocking vehicle’s two
tires, the distance between the neighboring radars should be
less than the typical spacing between a vehicle’s front and
rear tires. Besides, since all radars have the same height and a
fixed distance from each other, their data can be unified into
the vehicle’s center coordinate system by performing a sim-
ple translation transformation. The detailed implementation
will be presented in Section 4.1 (see Figure 13).

Next, when the radar signals are received, we perform
distance measurements and velocity measurements using a
two-phase Fast Fourier Transform (FFT). This process results
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Figure 7: Intensity levels of true and ghost points are
hard to be differentiated at all range intervals.

in a Range-Doppler Matrix (RDM), with each element con-
taining the intensity of a specific range and Doppler velocity.
We then apply a cell averaging constant false alarm rate
(CA-CFAR) detector to detect peaks in the RDM. Finally, we
estimate the azimuth angle of these peaks through the angle
FFT. The output is a point cloud  comprising measurements
of 5 parameters:

P ={p}, p=(r,uq,0,SI,SNR), (1)
where r represents the point’s range, vy represents its
Doppler velocity, 6 represents its azimuth angle, SI repre-
sents the signal intensity and SNR represents the signal-to-
noise ratio.

3.3 Ghost Removal through Neighborhood
Spatial/Velocity Feature Extraction

After the above pre-processing steps, we obtain the raw point
clouds which consist of true points, ghost points, and back-
ground noise points. The background noise points, sparse
and random, can be easily removed through the density-
based spatial clustering of applications with noise algorithm
(DBSCAN) [14], which is adopted in our system (detailed
in Section 3.4). However, distinguishing between true and
ghost points poses a dire challenge to the underlying design,
as ghost points often exhibit similar signal intensity as the
true points. Our experiments indicate a significant overlap in
signal intensity between ghost points and true points at sim-
ilar locations, as shown in Figure 7. Moreover, ghost points
often appear in locations where occluded vehicles are located
(illustrated in Figure 3), further complicating this task. In
this section, we provide a detailed explanation of our ghost
removal approach, which aims to accurately discriminate
ghost points from true points. To clearly explain our design,
we only focus on the sensing vehicle (with two radars on
each side) and the blocking vehicle below.

To distinguish true points from ghost points, two distinct
approaches are usually available. One approach is to use
deep-learning networks to perform point classification [15].
The other approach is feature engineering, which involves
extracting handcrafted features for each radar point and us-
ing these features to classify the points [25]. Considering the
amount of data and computational resources required by the
learning-based approaches, we adopt the second approach by
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monly mixed, while the ghost point clusters are sepa-
rated. (b) CDF of a point’s neighbor count in the sibling
radar’s corresponding frames.

thoroughly investigating the characteristics of radar points
and deriving a suitable feature set for classification purposes.

3.3.1 Neighbor Density Features. We first examine the point
density within a true/ghost point’s local neighborhood. Our
first observation is that true points tend to have more neigh-
bor points than ghost points, as shown by the CDF results
in Figure 8(a). This is because the mmWave signal energy
fades quickly with a longer reflection path, resulting in many
fewer ghost points which are also much more scattered.

We define our test point as p:;]:t with r denoting the radar
ID that generates the point and f the frame ID. Then we de-
fine the neighbor density feature F,, for p;;{t as the number
of neighbor points within the distance threshold:

Enl = b € P L dist(p.prl) < T}l @
where % is the radar point cloud, and T3, is the neighbor dis-
tance threshold. Next, we enhance this feature by incorporat-
ing additional temporal and spatial dimensions, generating
a suite of neighbor density features. Its complete neighbor
density features include:

e The neighbor density feature F;lfr The first feature is
the test point’s neighbor density feature value in the
current frame f from the same radar r;

e The history neighbor density feature F;’bfr_l. The sec-
ond feature calculates the neighbor density around
the test point’s location in the previous frame (with
frame ID f — 1). The rationale here is that a real ve-
hicle appears in similar positions in two consecutive
frames which generate dense points in both frames.
Thus, if a test point has dense neighbors in consecutive
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frames, its likelihood of being a true point increases.
Figure 8(b) shows our experimental evidence.

e The sibling sensor’s neighbor density feature F;I{r The
third feature calculates the neighbor density around
the test point’s location in frame f from the sibling
radar (we assume there are two radars on the same side
of the sensing car) with radar ID 7. The rationale here is
that if a test point has dense neighbors in both radars’
frames, its likelihood of being a true point increases.
As illustrated in Figure 9(a), if we merge the two frames
from both radars (with proper spatial calibration), we
find that the true points from the two radars tend to
cluster together, while their ghost points are further
apart. As a result, the difference between the neighbor
densities in the sibling radar’s frames is even more
pronounced, as shown in Figure 9(b).

3.3.2  Halfway Point Density Feature. We next examine the
point distributions in areas beyond the ghost point’s local
neighborhood and find that there is usually a cluster of points
halfway between the radar and the ghost point. That is, a
ghost point’s halfway point density is higher than a true
point’s halfway point density. We illustrate this pattern in
Figure 10(a). In our case, the halfway location between the
radar and the ghost point coincides with the blocking car’s
near-radar side. Besides, the CDF results depicted in Fig-
ure 10(b) also support this observation.

Below we explain this observation. In our case, the ghost
points result from signal reflections between the sensing
car and the blocking car (as shown in Figure 3). When the
radar receives the reflected signal after a single round trip
between the radar and the blocking car’s near radar side (the
reflecting surface), it generates the true points. When the
radar receives reflected signals after two or more round trips,
it generates the ghost points. When we focus on those ghost
points from two round-trip reflections, we find their signal
propagation distance is twice of the aforementioned true
points. We can find a cluster of true points around halfway
between the radar and the ghost points, hence the halfway
point density feature. Here, we ignore those ghost points
generated after more than two round trips because their
propagation paths are too complex to analyze.

He et al.
. — 70
“— True point velocity — True
6 Ghost point velocity 60 Ghost
5 =50
7 1 S a0
=4 e 2
g 04y e
3 /
L 20
et 7/
2 10
1 YRI () 0 Az A (b)
4 3 2 1 0 1 2 3 4 5 6 2 A

X (m) Original V;locityz(m/s) 3
Figure 11: (a) Doppler velocities of radar points, with

arrows representing direction and magnitude. (b) Orig-
inal velocity distribution of the points from a real ve-
hicle (red solid line) and a ghost (pink dashed line).
We define the halfway point density feature Fjq s as:
Fratf = |[{p € P | dist(p, phatr < Tupr}|s (3)
where the Phalf represents the halfway point between the
test point and the radar.

3.3.3  Neighbor Velocity Distribution Feature. After explor-
ing the point density distribution as the discriminating factor,
we next explore the dynamic aspect of points: velocity. To
be more precise, we leverage the Doppler velocity of radar
points [18] and differentiate between true points and ghost
points by exploring differences in their velocity variation
patterns. The mmWave radar detects an object’s Doppler
velocity, which represents the radial velocity (as shown in
Figure 11(a)), by calculating the phase differences A® of adja-
cent chirps in the reflected signals [20]. Given the wavelength
A of mmWave signals and the time interval T. between chirps,

the Doppler velocity vy can be calculated as: v = ﬁ%. No-
tably, Doppler velocities of radar points can’t be directly used
for point discrimination. Instead, in the case of vehicles driv-
ing side by side, we can accurately reconstruct the original
velocity based on the Doppler velocity v, and azimuth angle
0 of the radar points: v = vy/sind.

Among the points generated by the radar, the true points
reflected by the same car exhibit the same velocity, i.e., the
reflecting car’s velocity. Conversely, ghost points, affected
by accumulated phase errors from multiple reflections [49],
are anticipated to exhibit different velocities. To illustrate,
Figure 11(b) shows an example of the original velocity distri-
butions of true points and ghost points, in which the x axis
represents the velocity, and the y axis represents the ratio of
radar points moving at different velocities. We observe that
true points predominantly exhibit the same velocity, forming
a main peak, while the ghost velocities are more chaotic and
scattered, even with different directions.

We thus propose a feature that characterizes the test
point’s neighbors’ velocity distribution, denoted as F,;.
We consider a velocity range of (—10,10)m/s, with an in-
terval of 0.1m/s. The neighbor velocity distribution vector
Ryer = (11, ..., ryr) thus records the ratio of neighbor points
whose velocity falls within the M (M = 200 in our implemen-
tation) velocity intervals. Notably, this velocity range refers
to the range of velocity differences between the sensing car
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and neighboring cars. We believe such a velocity difference
range is reasonable for real-world driving conditions, and
our experiments in Section 5 have confirmed this.

In this raw form, such velocity distribution vectors are
usually sparse — on average, 43.8% of the vector elements
are zeros. We then employ principal component analysis
(PCA) to record the velocity ratios in a reduced 3-dimensional
vector. The resulting feature F,; is calculated as:

Fye1 = RyelW, W= (w1, wa2,w3), (4)
where wy,wz, w3 represent the top three principal compo-
nents, each being a column vector of length N.

3.3.4 mmOVD Point Classification. We summarize our pro-
posed radar point classification feature set in Table 1. Within
the feature set, the test point is denoted as p;’e];t. We set the
neighbor distance threshold, denoted as T, to 0.8m. This
value is chosen as vehicles typically maintain a lateral gap of
over 1m for safety. Our experiments demonstrate that over
95% of points whose distances from each other are smaller
than this threshold belong to the same vehicle or ghost.

A classifier is then utilized to differentiate between real
and ghost points, using the features outlined in Table 1 as
input. We have tested a variety of lightweight machine-
learning-based classifiers, including decision tree [22], ran-
dom forest [10], and support vector machine (SVM) [4]. We
calculate the classification accuracy and computation latency
of these classifiers, which are presented in Section 4.2. The
points that are classified as ghosts will be eliminated, while
the remaining points will be utilized for vehicle detection.

3.4 Occluded Vehicle Detection through
Aggregation across Frames

After identifying the ghost points and removing them, we

next cluster the clean points and estimate the bounding boxes

of the detected vehicles. Then from the spatial relationship

between the bounding boxes, we infer their relative positions

and detect the occluded cars.

Table 1: Our mmOVD point feature set

Feature Description
r, vg, 0, Basic features: range, azimuth, doppler velocity,
SI, SNR signal intensity, and signal-to-noise ratio of p:e]: .
rf Number of points within the distance threshold T;,p,
Fnbr to p"xf
test

prf-1 Number of points within the distance threshold T},

nbr to p:’ej; in the previous frame
Ff Number of points within the distance threshold T},
nbr to p;’e];t in the frame of the sibling radar
Fhaty Number of points within the distaflce threshold T,,3,
to the halfway point
Fout Reduced 3-dimensional velocity distribution of the

points within the distance threshold T,,3, to p:’ej:t
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Figure 12: Illustration of the cross-frame cumulative
aggregation approach

A typical approach is to first apply clustering algorithms
(e.g., DBSCAN [14]) on each frame to obtain the cars’ bound-
ing boxes, and then perform object tracking to associate the
bounding boxes to refine their locations/sizes. However, we
cannot directly apply this approach in our case because the
radar points reflected from occluded vehicles are unstable
(illustrated in Figure 4), rendering the per-frame clusters less
reliable than desired. To make matters worse, these clusters
also contain ghost points that are hard to remove.

To combat the challenge caused by the unstable nature
of the reflected signals, we propose a conservative cluster-
ing, cumulative aggregation approach, which consists of two
stages. First, we perform conservative clustering by employ-
ing a relatively small distance threshold, generating small
and possibly incomplete clusters while avoiding aggressively
grouping points from different objects into a cluster. Second,
we accumulate the incomplete clusters for the same object
from consecutive frames and then carefully aggregate them
into a more complete cluster of each car. In this way, we can
effectively cope with the unstable points from reflected sig-
nals and accurately extract the bounding box of an occluded
car. Figure 12 shows the pipeline of our algorithm.

3.4.1 Per-Frame Point Clustering. We employ the DBSCAN
algorithm [14], which is often used for radar point clustering
under the assumption that a real target consists of points
that are near each other. DBSCAN determines the physical
distance between each pair of points, and points within a pre-
set threshold are assigned to the same cluster. This threshold,
denoted by T,jysser, 1S a critical parameter for the algorithm.
We adopt a relatively small Tj,szer value, i.e., 0.5m in our
current implementation. This decision considers the fact that
vehicles typically maintain a lateral gap of over 1m for safety.
Consequently, we use half of this shortest lateral distance
as the distance threshold to ensure that point clouds from
two vehicles are not clustered into one target and allows for
some positioning error in the radar point cloud.

Based on the resulting clusters, we extract the center po-
sition and size of each cluster, which together constitute the
bounding box of a detected object.
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Figure 13: (a) Illustration of hardware setup of mmOVD.
(b) Photo of the left side of our sensing vehicle.

3.4.2  Cross-Frame Cumulative Cluster Aggregation. We es-
tablish a sliding window of length W, which continuously
holds the clustering results of the latest W frames. We then
perform cumulative cluster aggregation as follows:

} Camera

o Cluster Aggregation. We sequentially fetch frames in
the sliding window and match clusters across frames
based on the center distances. The algorithm works
by selecting the pair of clusters with the closest center
distance and terminates when the closest center dis-
tance exceeds the threshold of 2T,j,s;er (i.€., 1m). This
choice considers the fact that vehicles typically have
a center distance of over 2m from each other. Each
matched pair of clusters is considered to belong to the
same object and is merged into one. This matching
and merging operation is iterative by nature as we
may have more than one cluster in a frame due to our
conservative clustering approach. We continue to per-
form this action until all the frames in the aggregation
window are processed.

o Cluster Cleansing. We then eliminate those clusters
that have had no match in the previous step, assuming
they are false targets. Finally, we check through the
bounding boxes of all the remaining clusters. If two
boxes intersect, we merge them into a single cluster.

3.4.3  Occlusion Detection. The last issue we consider is how
to use the detection results to alert the driver to pay attention
to occluded vehicles. We first examine the detected bound-
ing boxes and determine whether a bounding box occludes
another. Figure 12 showcases two output frames with oc-
clusions. To deal with occasional false positive detections,
we propose a simple yet effective strategy: when mmOVD
detects an occluded vehicle in N consecutive frames, it trig-
gers an alarm. We will show how to empirically select the
appropriate threshold value N in Section 4.4.

4 EVALUATION THROUGH CONTROLLED
EXPERIMENTS

4.1 Experimental Setup

Prototype mmOVD. We have implemented the prototype
mmOVD system using two different types of mmWave radar:
the TI AWR1642BOOST [36], operating in the frequency
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band of 77-81 GHz, and the TI IWR6843ISK [37], operating
in 60-64 GHz. This choice ensures that they do not interfere
with each other. The radars are configured to achieve a the-
oretical range resolution of 9.75 cm, a velocity resolution
of 0.41 m/s, and an azimuth resolution of 15°. Each radar is
connected to a TI DCA1000EVM data capture card [38] for
achieving high-speed data transmission. Additionally, to em-
ulate a typical vehicle detection system, we install 4 cameras
on the experiment vehicle’s roof, inspired by nuScenes [5].
Please note that these cameras are not part of our system but
are solely used for performance comparison and verification
of our system. The hardware setup is depicted in Figure 13(a).
Radar Placement. When implementing mmOVD, the place-
ment of radars significantly influences the system’s perfor-
mance. Our experiments with radars in different positions
revealed that the radars should be placed as low as possible.
Lower placement allows more waves to propagate under
the blocking vehicle, enabling clearer detection of occluded
vehicles. Additionally, positioning the radars next to the tires
rather than in the middle of the doors reduces the intensity
of ghost points, as the tires are less reflective than flat doors,
resulting in fewer and weaker ghost points. Therefore, we
placed the radars near the four tires on the side of the vehicle,
as shown in Figure 13(b). The height of the radars is 0.25
meters, corresponding to the chassis height of the vehicle,
and the distance between neighboring radars is 1.7 meters.

Experiment Settings. To address potential occlusion sce-
narios in real driving situations, we carefully examine several
important parameters of an occlusion scenario: (1) The lon-
gitudinal distance between vehicles, (2) the lateral distance
between vehicles, (3) the types of blocking/blocked vehicles,
and (4) the driving patterns of vehicles. Varying these pa-
rameters, our evaluation involves experiments conducted
across 56 diverse scenes, as illustrated in Figure 14. These
experiments can be categorized into two types of settings:
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o Setting I: Underground Garage: In this setting, we
construct various occlusion situations in an underground
parking lot, under different parameter settings. We keep the
sensing and blocking vehicles stationary while moving the
target vehicle. Initially, we position the sensing vehicle and
the blocking vehicle side by side in two adjacent lanes. The
longitudinal distance between them varies from -2.5 meters
to 2.5 meters, while the lateral distance ranges from 1 meter
to 2.5 meters. Subsequently, we drive the target vehicle along
the third lane, capturing the entire process as it enters and
exits the blind zone. Our aim is to precisely detect the target
vehicle within the blind zone. In this set of experiments, we
recorded a total of 105 minutes of data across 35 distinct
scenes. The vehicles we used include 4 sedans, 2 SUVs, 1
minibus, and 1 motorcycle.

o Setting II: Campus Road: In this setting, we drive the
sensing vehicle, blocking vehicle, and target vehicle on cam-
pus roads in the following four scenarios: (1) Three vehicles
drive side by side at similar speeds; (2) the sensing vehicle
and blocking vehicle drive at similar speeds, while the target
vehicle overtakes from behind; (3) the sensing vehicle and
target vehicle drive at similar speeds, while the blocking ve-
hicle overtakes from behind; and (4) only the sensing vehicle
and the blocking vehicle drive at similar speeds, with no
occluded vehicles within the blind zone. Our aim is to assess
the system’s performance in different driving patterns and
to verify the effectiveness of our ghost removal scheme. We
have recorded 105 minutes of data across 21 different scenes,
encompassing various vehicle types, road environments, and
driving patterns. Out of the 105 minutes of data, 60 minutes
involve occlusion conditions. The vehicles we used include 3
sedans and 2 SUVs, with speeds ranging from 20 to 40 km/h.
Experiment Data Preparation. To summarize, we con-
ducted our controlled experiments in an underground garage
and on two campus roads, generating a total of over 200 min-
utes of data. We deployed a 32-line LiDAR on the roof of the
blocking vehicle to obtain bounding boxes of target vehicles.
The results obtained from the LiDAR are considered ground
truth, which will be used for labeling the radar points.

The labeled radar data is then split into two distinct sets:
a training set comprising 60 minutes of data, and a testing
set comprising 150 minutes of data. Please note that the
scenarios of the training set and the testing set do not overlap.
The training set is used to train the point classifier and the
test set is used for evaluation.

Performance Metrics. We adopt the following metrics to
evaluate the proposed mmOVD system:

e Accuracy of Point Classification: The points generated by
real vehicles are labeled as positive, while the ghost points
and noises are labeled as negative. Therefore, the correctly
classified points are counted as true positive (TP) and true
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Figure 15: Illustration of an occlusion event. We get the
start and end of an event by monitoring when the target
vehicle disappears from cameras and when it reappears.

negative (TN), while the incorrect ones are false positive

(FP) and false negative (FN). The accuracy is defined as
TP+TN
TPATN+FPIFN
e Accuracy of Occluded Vehicle Detection: As shown in

Section 3.4, we extract the bounding box of the target vehicle
from point clouds. If the center of detected bounding box is
inside the ground-truth bounding box (which is obtained by
the LiDAR), it is counted as a true positive (TP). Otherwise,
the detections and ground-truth objects are counted as false
positives (FP) and false negatives (FN), respectively. We
mainly use the F1 score to assess the accuracy, which is the
harmonic mean of precision (P) and recall (R), i.e., F1 = %.

e Success Rate of Occlusion Event Detection: We first de-
fine an occlusion event as the entire process of the target
vehicle entering and exiting the blind zone, as shown in Fig-
ure 15. By monitoring when the target vehicles disappear
from cameras’ fields of view and subsequently reappear, we
can determine the ground-truth start and end times of each
occlusion event. mmOVD triggers an alarm when it detects
an occluded vehicle in N consecutive frames (where N is a
preset alarm threshold). If mmOVD raises an alarm for a true
event, we consider the event as successfully detected. The
success rate is calculated as the ratio between the number of
detected occlusion events and the total number of occlusion
events. To find the appropriate threshold N for achieving a
high success rate while mitigating false alarms, we perform
statistical analysis on false alarms in no occlusion scenarios.

4.2 Radar Point Classification

Firstly, we evaluate the accuracy of point classification with
our feature set under different classifiers and compare the
results with the feature set proposed by Prophet et al. [25].
The comparison results are shown in Figure 16, which shows

Table 2: Classification accuracy and average comput-
ing time for each frame of radar point clouds under
different classifiers on AMD Ryzen 7 5800H processor

. Random | Decision | Gaussian Linear
Classifier | "¢ rest | Tree sym | KN suy

Accuracy 94.2% 92.3% 90.5% 89.5% 88.1%

Latency 437ms | 3.55ms 171ms | 319ms | 3.65ms
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that our feature set outperforms the baseline by a large mar-
gin. For example, our feature set, when combined with the
decision tree model, can improve the accuracy from 72.9%
to 92.3%, accounting for a 19.4% improvement.

Besides, we observe considerable variations in the com-
puting times of different classifiers, as shown in Table 2. The
processing is done by the AMD Ryzen 7 5800H processor.
Among all the classifiers, random forest model incurs the best
classification accuracy (94.2%) with an acceptable latency
(4.37 ms per frame). Taking into consideration both accu-
racy and efficiency, we opt for random forest model as the
preferred classifier for subsequent experimental evaluations.

Furthermore, to demonstrate the effectiveness of mmOVD
feature set, we conduct ablation experiments on the five fea-
tures, each carefully designed by us. We begin with solely
utilizing the five basic features (i.e., range, azimuth, doppler
velocity, intensity, and SNR) as our baseline. Subsequently,
we systematically incorporated each of our custom-designed
features, evaluating the accuracy of point cloud classification
along the way. Figure 17 shows the results: after integrating
our five features, the accuracy of point cloud classification
improved by 23.5% compared to the baseline. Notably, F;’bfr,
Frair, and Fy; exhibited the most substantial enhancements,
with improvements of 6.2%, 8.8%, and 5.7%, respectively. We
have also examined the Gini importance [19] of each feature
in the random forest model. Specifically, our five proposed
features—F’:’{r, F;’bfr_l, F;’bfr, Fhaif, and Fye;—have Gini impor-
tances of 8.7%, 6.5%, 13.5%, 15.6%, and 12.8%, respectively.
These results confirm the significance of the features we
proposed for point cloud classification.

4.3 Occluded Vehicle Detection

We then evaluate the overall performance of our cross-frame
aggregation detection algorithm and two baseline schemes,
illustrated in Figure 18. The blue line represents the per-
formance of solely utilizing DBSCAN for vehicle detection
under different distance thresholds, showing the optimal F1
score achieved is 81.8%. We also apply a typical tracking
algorithm, AB3DMOT [45], on top of DBSCAN. The results
are represented by the yellow line, with an optimal F1 score
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of 83.9%. Meanwhile, our method outperforms the baselines
significantly, with an optimal F1 score of 91.1%.

In addition, we also evaluate the performance of our cross-
frame aggregation-based vehicle detection algorithm under
different sliding window sizes. Here, we adopted the AMD
Ryzen 7 5800H processor for the task. We report the F1 score
and average computing latency in Figure 19. The results
demonstrate that the performance of the mmOVD becomes
better as the length of the sliding window increases. Specifi-
cally, when the length of the sliding window reaches 6, the
F1 score of both Setting I and Setting II exceeds 90%. No-
tably, the F1 score of Setting II is always slightly lower than
Setting I, while the gap decreases as the window length in-
creases. This difference arises because Setting II involves a
rather challenging occlusion scenario, where three vehicles
are driving side by side at similar speeds for 20 minutes.
However, we note that vehicles driving side by side for an
extended period of time are not common in the real world
as it is considered a bad driving habit [48].

Furthermore, we observe a nearly linear increase in the
computing latency with the increase in sliding window
length. The reason is that the amount of computation in
our detection algorithm is directly proportional to the win-
dow length. Considering that our radar transmits data at 30
frames per second, it is crucial to keep the computing latency
of each frame below 30ms. Since our random forest model
costs 4.37 ms per frame (Table 2), we have chosen the length
of the sliding window to be 6, with an average computing
latency of 18.99 ms per frame. All subsequent evaluations
will be based on this window length.

In Setting I, we construct various occlusion scenarios un-
der three important parameters: longitudinal distance, lateral
distance, and types of vehicles. In Setting II, we conduct ex-
periments in different driving patterns. We then quantify the
influences of these parameters on occluded vehicle detection.
Impact of Longitudinal Distance Between Vehicles. The
longitudinal distance between the sensing and blocking ve-
hicles plays a crucial role in determining the extent of the
blind zone. Specifically, we define the longitudinal distance
as negative when the blocking vehicle is positioned behind
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sensing vehicle, and positive when it is ahead. Figure 20(a)
shows the system’s performance at different longitudinal dis-
tances. As the longitudinal distance approaches 0 (i.e., two
vehicles are side by side), the F1 score of vehicle detection
decreases by 2%, 2.3%, 2.5%, and 3.2%, respectively, compared
to other four distance settings. The reason is that when the
two vehicles are completely parallel, the blind zone becomes
the largest, leading to the occlusion of the target vehicle for
a longer duration. However, we note that this situation is
not common in the real world [48].

Impact of Lateral Distance Between Vehicles. The lat-
eral distance between the sensing and blocking vehicles is
another important parameter to consider. As we focus on
the occlusion scenarios, we assume that all three vehicles
stay within their respective lanes and maintain a safe lateral
distance of at least 1 meter between them. Figure 20(b) shows
the system’s performance under different lateral distances
between the sensing vehicle and the blocking vehicle. It can
be seen that when the distance is smaller than 1.3 meters, the
F1 score is 2.5% to 3.3% lower compared to other situations.
This decline is caused by the stronger multi-path effect and
more severe occlusion when the blocking vehicle gets too
close. However, vehicles driving in adjacent lanes usually
do not maintain such a short distance in the real world. Ad-
ditionally, Figure 20(c) presents the system’s performance
under different lateral distances between the blocking vehi-
cle and the target vehicle. The F1 scores consistently exceed
90%, and there are no notable fluctuations across different sit-
uations. Collectively, the results demonstrate that mmOVD
is rather robust against varying lateral distances.

Impact of Vehicle Type. The type of vehicles can indeed
influence the way of forming ghost points, and hence the
detection of occluded vehicles, due to their varying shapes
and sizes. Therefore, we select several types of vehicles for
experimentation. In addition to the common SUV and sedan
types, our experiments also involve a minibus as the blocking
vehicle and a motorcycle as the target vehicle. The results
presented in Figure 20(d) indicate that when the blocking ve-
hicle is a sedan, the F1 score is 1.1% to 1.6% lower compared
to other types. This is attributed to sedans typically having

3

e e e
S 2 8

Success Rate (%) _

1
'
'
1
'
'
'
'
1
'
1
'
'
1
'
'
'

(b)

95| W19
10 12 14 16 18 20 22 24 26 28 3

Alarm Threshold

| (2)
CRN RS

Number of Consecutive FP Frames
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rate are achieved with the alarm threshold set to 15.
(a) CDF of consecutive FP detection number when there is
no occlusion. (b) Success rate of occlusion event detection
under different alarm threshold values.

lower chassis, making it more challenging to detect the oc-
cluded vehicle. Figure 20(e) shows that when the motorcycle
is occluded, the F1 score of detection is 2.6% to 3% lower
compared to vehicles. Due to its smaller size, the reflection
of mmWave signals is much weaker in this case.

Impact of Driving Patterns. In Setting II, we emulate real
driving scenarios on campus roads using six distinct experi-
mental setups. In the first three setups, we employ an SUV
as the blocking vehicle and a sedan as the target vehicle.
Each setup features different driving patterns: (1) Three ve-
hicles drive side by side at similar speeds; (2) the sensing
vehicle and blocking vehicle drive at similar speeds, while
the target vehicle overtakes from behind; and (3) the sens-
ing vehicle and target vehicle drive at similar speeds, while
the blocking vehicle overtakes from behind. Subsequently,
we exchange the two vehicles and repeat the experiments.
The performance of different driving patterns is shown in
Figure 20(f). Notably, in driving pattern 1, in which three
vehicles are driving side by side, the target vehicle remains
continuously occluded. Consequently, the F1 score of driving
pattern 1 is 2.5% to 2.9% lower than in the other patterns but
still exceeds 89%, showcasing mmOVD’s ability to handle
long-term occlusion scenarios effectively.

4.4 Occlusion Event Detection

As mmOVD triggers an alarm when it detects an occluded
vehicle in N consecutive frames, the choice of the alarm
threshold N is crucial. On one hand, if N is too small, it may
result in a high false alarm rate. On the other hand, if N is too
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Figure 22: Our 324-kilometer route includes various
types of crowded roads.

large, it may lead to missed alarms and delayed responses. In
this work, we attempt to find the smallest N that gives a low
enough (say, 5%) false alarm rate. This decision is inspired by
the state-of-the-art LIDAR-based vehicle detection algorithm
(VirConv-S [47]), which has a false alarm rate exceeding 5%.

In order to find the threshold value that gives a certain
false alarm rate, we collect additional data from the campus
road setting when there is no occlusion. Here, we drive the
sensing vehicle and the blocking vehicle side by side on the
campus road, ensuring that there are no occluded vehicles
within the blind zone.In this set of experiments, we recorded
45 minutes of data across 15 distinct scenes.

Specifically, we calculate the likelihood of having N con-
secutive false positive (FP) detections when there is no oc-
clusion. Then we obtain the CDF and present the results
in Figure 21(a). We observe that by choosing N = 15, the
corresponding CDF is 95%. That is, in an unknown situation,
when we detect the presence of a hidden vehicle from 15
or more frames consecutively, the probability of having no
occlusion is lower than 5%, thus the false alarm rate of 5%.
As a result, we can choose the alarm threshold N = 15 in
our system — mmOVD triggers an alarm when it detects an
occluded vehicle in 15 consecutive frames. Notably, although
increasing the value of N could further reduce the false alarm
rate while keeping a 100% of success rate, it would also de-
lay the response time. We chose N to be 15 to ensure that
mmOVD maintains a short response latency.

In addition, we also plot the system’s success rate of occlu-
sion event detection with different alarm threshold values,
shown in Figure 21(b). With the alarm threshold set to 15,
mmOVD achieves a 100% success rate of occlusion event
detection. As a result, we conclude N = 15 is a suitable
threshold for issuing occlusion alarms for it achieves a 100%
success rate while mitigating the false alarm rate to be lower
than 5% in our dataset.

4.5 Limitations and Discussion

While mmOVD has achieved high performance in many sce-
narios, it is important to acknowledge its limitations. First,
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our study has primarily focused on three-lane environments.
Although we anticipate that this approach could be extended
to four-lane environments and detect fully occluded vehi-
cles behind two blocking vehicles, this remains an intriguing
topic for future research. Second, mmOVD’s ability to detect
smaller targets, such as bicycles and pedestrians, is limited be-
cause these targets are less reflective than cars and motorcy-
cles. These limitations are partly due to the restricted power
and resolution of the commercial off-the-shelf radars used in
our system. Therefore, utilizing more advanced radars with
higher power or developing methods to detect weak targets
could potentially address these limitations.

5 OCCLUSION DETECTION WHILE
DRIVING IN THE REAL WORLD

After conducting extensive controlled experiments, we next
assess the performance of mmOVD while we drive the sens-
ing car in the real world.

Driving Scenarios and Data Acquisition. We drove mul-
tiple trips from our campus to a nearby town with a sensing
car equipped with the mmOVD prototype. The route in-
cluded parkways, tunnels, freeways, overpasses, and bridges,
most with three or four lanes (as shown in Figure 22). We
drove a total distance of 324 kilometers over 580 minutes,
reaching a maximum speed of approximately 70 km/h. We
acquired 153,000 frames of valid data. We manually anno-
tated the occlusion events by examining the camera images
frame by frame. Our dataset comprises 226 occlusion events,
each lasting between 0.7 and 4 seconds.

Occlusion Event Detection while Driving. To evaluate
our system’s overall performance with different training
data amounts, we vary the training data volume from 10%
to 60% of the total data and report the detection success rate
and false alarm rate in Figure 23. For each data point, we
conducted 10 experiments, each experiment using randomly
sampled data. We discover that even with just 10% of the
total data (i.e., 15,300 frames) used for training, our system
achieved a detection success rate of 92.3%. Furthermore, the
false alarm rate of the system remained consistently low
(less than 4%), showcasing the robustness of our system
when operating in real-world environments. Additionally,
each occlusion commonly lasts 2-4 seconds in real-world
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Figure 24: (a) The occlusion event detection results over a 30-minute period. (b) The occluded vehicle detection

results over a 600-frame period.

scenarios, and mmOVD triggers a correct alarm on average
within 0.7 seconds after the occlusion starts.

In Figure 24(a), we plot the number of occlusion events
detected within a minute over a 30-minute period, collected
while the vehicle was driving on a busy overpass. The yellow
bars represent the ground-truth number of occlusion events
during each time interval, while the brown and blue lines
represent the average number of successfully detected oc-
clusion events and falsely alarmed occlusion events during
that interval, respectively. This figure demonstrates that our
system exhibits excellent performance even in crowded sce-
narios. As for the occasional errors, we found that they were
mainly caused by situations not considered in the controlled
experiments. For example, we observed several trucks being
occluded that our system failed to detect. The reason is that
the chassis of these trucks are much higher than common
cars, and are beyond the radars’ detection range. Fortunately,
these trucks are typically tall enough for cameras to detect
even when occluded by other cars.

In Figure 24(b), we show the fine-grained per-frame oc-
cluded vehicle detection result over a 600-frame (20 seconds)
period, containing 4 occlusion events. Due to the complexity
of crowded road environments, occasional per-frame missed
detection and false positives may occur, which is expected.
However, our event-level detection mechanism can effec-
tively accommodate these occasional per-frame errors.

6 RELATED WORK

Partial Occlusion Detection. In the area of autonomous
driving, many works have been proposed to detect vehicles
under occlusion [16, 53]. The researchers primarily employ
cameras and LiDARs for perception and propose various
occlusion handling strategies to enhance vehicle detection
models. Some researchers utilize a vehicle’s distinctive ap-
pearance, such as the windscreen [39], or rely solely on deep
learning methods [16] to enhance detection performance.
However, these methods have limitations and are only effec-
tive in partially-occluded scenarios.

Radar-based Detection. In the area of wireless sensing,
many researchers have focused on achieving non-line-of-
sight (NLOS) detection based on mmWave radar, e.g., detect-
ing objects behind corners [8, 9, 12, 31, 35, 52]. For example,

Guo et al. [8] proposed a NLOS location algorithm based
on ray-tracing model using a mmWave radar. Yue et al. [52]
achieved accurate indoor localization around corners, and
addressed the limitations of the ray-tracing model used in
past work. Additionally, Scheiner et al. [28] applied Doppler
radars to detect and track hidden objects in outdoor environ-
ments. Although the principle of detecting targets around
corners is similar to our work, the complexity of automotive
environments has brought challenges to our system.

Ghost Classification. Identifying ghost detection re-
mains a critical problem for mmWave radar sensing [17].
Some researchers utilize deep learning algorithms to detect
ghost points [15]. Specifically, they utilize the PointNet++
architecture to learn the point features and detect ghosts.
This approach can achieve good performance on the dataset
while being time-consuming and resource-consuming. Be-
sides, Prophet et al. [25] proposed a feature engineering
approach to distinguish the ghost points. The performance
comparison of our method and their method has been pre-
sented in Section 4.2, indicating our method is more effective
in eliminating ghost points in occlusion scenarios.

7 CONCLUSION

We have presented mmOVD, a practical system for detect-
ing fully occluded vehicles using millimeter-wave radars.
mmOVD takes advantage of the multipath in the environ-
ment to see through vehicles, while addressing the challenges
due to ghost points and unstable reflections. For the first time,
we can accurately detect and localize an “unseeable” vehicle.
We believe that the design, implementation, and evaluation
of our results present important practical contributions to-
ward safer autonomous driving.
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