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mmPlace: Robust Place Recognition
With Intermediate Frequency Signal of

Low-Cost Single-Chip Millimeter Wave Radar
Chengzhen Meng , Yifan Duan , Graduate Student Member, IEEE, Chenming He , Dequan Wang ,

Xiaoran Fan , and Yanyong Zhang , Fellow, IEEE

Abstract—Place recognition is crucial for tasks like loop-closure
detection and re-localization. Single-chip millimeter wave radar
(single-chip radar in short) emerges as a low-cost sensor option
for place recognition, with the advantage of insensitivity to de-
graded visual environments. However, it encounters two challenges.
Firstly, sparse point cloud from single-chip radar leads to poor
performance when using current place recognition methods, which
assume much denser data. Secondly, its performance significantly
declines in scenarios involving rotational and lateral variations, due
to limited overlap in its field of view (FOV). We propose mmPlace, a
robust place recognition system to address these challenges. Specif-
ically, mmPlace transforms intermediate frequency (IF) signal into
range azimuth heatmap and employs a spatial encoder to extract
features. Additionally, to improve the performance in scenarios
involving rotational and lateral variations, mmPlace employs a
rotating platform and concatenates heatmaps in a rotation cycle,
effectively expanding the system’s FOV. We evaluate mmPlace ’s
performance on the milliSonic dataset, which is collected on the
University of Science and Technology of China (USTC) campus, the
city roads surrounding the campus, and an underground parking
garage. The results demonstrate that mmPlace outperforms point
cloud-based methods and achieves 87.37% recall@1 in scenarios
involving rotational and lateral variations.

Index Terms—Localization, recognition.

I. INTRODUCTION

P LACE recognition plays a vital role in various fields [1],
such as robotics, autonomous vehicles, augmented reality,

and more. The main goal of place recognition is to identify
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TABLE I
COMPARISON OF DIFFERENT RADAR PLACE RECOGNITION SYSTEMS

previously visited locations based on sensor data and match them
with a pre-built map database. For example, in Simultaneous
Localization and Mapping (SLAM), place recognition plays
an essential role in loop-closure detection, which helps correct
the accumulated error in the robot’s estimated trajectory. More-
over, in long-term navigation, place recognition assists with re-
localization, enabling the robot to determine its position within
the map after an extended period or after being temporarily lost.

Camera and LiDAR are currently the dominant sensors for
place recognition [4]. However, due to they are both optical
sensors, their performance degrades severely in degraded vi-
sual environments, such as fog, rain, and snow [5], [6], [7].
On the other hand, the radar exhibits insensitivity to degraded
visual environments due to its longer (than vision) wavelength
(λ ≈ 4 mm). Specifically, the radar utilizes the millimeter-wave
signal with a wavelength larger than the small particles in
fog, rain, and snow, enabling easy pass through raindrops and
snowflakes [1], [5], [8].

Currently, radars used in place recognition systems [9] can
be categorized into two types: mechanical and single-chip. As
shown in Table I, although single-chip radar has fewer point
clouds and a smaller FOV than mechanical radar, it offers the
advantage of being much more affordable. However, leveraging
a single-chip radar for place recognition presents two following
challenges. Firstly, the point cloud data of a single-chip radar
is sparse. Consequently, it encounters performance degradation
when incorporated into current place recognition methods [10],
[11], [12], [13], [14] that rely on the dense point cloud. Secondly,
the restricted FOV of the single-chip radar exhibits limited over-
lap between the current query data and the candidate data stored
in the pre-built map database, particularly in scenarios with
rotational and lateral variations. Consequently, the performance
of the single-chip radar place recognition noticeably degrades
in scenarios involving rotational and lateral variations.
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Fig. 1. Our single-chip radar place recognition system. It finds the same
location in a pre-built map database based on the given query data.

In this letter, we propose mmPlace, a robust place recognition
system based on a low-cost single-chip radar. As shown in
Fig. 1, mmPlace identifies previously visited locations from
a pre-built map database based on the single-chip radar. To
begin with, mmPlace sets out from the IF signal, which is the
raw data of single-chip radar for generating the point cloud.
Specifically, mmPlace employs heatmap generation and feature
extraction on the IF signal. Heatmap generation estimates range
and angle to create the range azimuth heatmap, while feature
extraction generates the place descriptor by applying a spatial
encoder on the heatmap. Subsequently, mmPlace compares the
similarity between the generated place descriptor and the place
descriptors in the pre-built map database to recognize the current
location. Moreover, mmPlace proposes to employ a rotating
platform and concatenates heatmaps in a rotation cycle. This
method not only effectively compensates for the antenna gains
but also significantly enhances the FOV of the single-chip radar
place recognition system, enhancing the system’s performance
in scenarios with rotational and lateral variations.

Although there are some datasets available for the IF sig-
nal [15], [16] of single-chip radar or for the place recognition [2],
[3], we are unable to find a dataset specifically focusing on the IF
signal of single-chip radar for place recognition. As a result, we
establish a dataset named milliSonic for single-chip radar place
recognition, incorporating data from the USTC campus, the
city roads surrounding the campus, and an underground parking
garage. Subsequently, we conduct a performance evaluation of
mmPlace on this self-collected milliSonic dataset.

In summary, our contributions are as follows:
� We propose mmPlace, a robust place recognition system

based on a low-cost single-chip radar. This system trans-
forms the IF signal into the range azimuth heatmap and
employs a spatial encoder to extract heatmap features for
place recognition, outperforming both point cloud-based
and point cloud image-based methods.

� Our mmPlace proposes to employ a rotating platform
and concatenate heatmaps based on the relative pose in
a rotation cycle, achieving 87.37% recall@1 in scenarios
encompassing rotational variations from 0 to 40 degrees
and lateral translation variations from 0 to 3 meters.

� We collect a dataset, called milliSonic,1 for the single-chip
radar place recognition on the USTC campus, the city
roads surrounding the campus, and an underground parking
garage.

1The dataset and its related code are released here: https://github.com/TC-
MCZ/mmPlace

II. RELATED WORK

In this section, we review the related work on place recogni-
tion, which can be classified into three categories based on the
sensors: camera, LiDAR, and radar.

A. Visual Place Recognition

Visual place recognition is the most investigated technique
in the place recognition area because of the camera’s ubiquity,
rich information, and cost-effectiveness. Initially, Cummins et
al. [17] propose a non-learning method called FAB-MAP that
uses SIFT features to construct a Bag-of-visual-words (Bow) ar-
chitecture for place recognition. However, learning-based place
recognition methods have become more prominent with the
advent of learning-based feature extraction [18], [19]. For exam-
ple, Arandjelovic et al. [20] introduce NetVLAD, a generalized
VLAD layer that enhances the generalization ability of visual
place recognition. Building upon NetVLAD, Hausler et al. [21]
develop Patch-NetVLAD, which combines the benefits of local
and global descriptor techniques by deriving patch-level features
from the VLAD layer that are highly invariant to translation and
rotation changes.

B. LiDAR-Based Place Recognition

Unlike cameras, LiDAR can capture the 3D geometric struc-
ture of the surrounding environment using laser beams. Kim
et al. [10] propose ScanContext, a rotation-invariant 3D place
descriptor that directly records the 3D structure of visible space.
As an extension of ScanContext, Kim et al. [11] develop Scan-
Context++, a generic descriptor that is robust to both rotation and
translation. With the emergence of learning-based 3D feature
extraction, Vidanapathirana et al. [12] introduce LoGG3D-Net,
which employs a local consistency loss to guide the network to
learn the consistent local features.

C. Radar-Based Place Recognition

Unlike cameras and LiDAR, radar operates at much lower
frequencies (GHz), making them insensitive to degraded visual
environments such as rain, dust, fog, and direct sunlight. Hong et
al. [13] develop RadarSLAM by directly employing the LiDAR
place recognition method M2DP [22]. Barnes et al. [14] intro-
duce a self-supervised framework for odometry estimation and
use an intermediate feature as a global descriptor for place recog-
nition. Cautoplai et al. [6] propose AutoPlace, which extracts
spatial-temporal features from the radar point cloud for place
recognition, utilizing five single-chip radars. These methods,
which utilize the point cloud, involve two types of input: one
directly using the point cloud and the other projecting it onto
a fixed-size bird’s-eye-view image (called point cloud image).
These methods are effective with mechanical radar such as
CTS350-X, or when using five single-chip radars like ARS408.
However, their performance significantly degrades when applied
to a low-cost single-chip radar, such as AWR1642, which is the
single-chip radar utilized in our mmPlace and is generally more
budget-friendly (as shown in Table I).

III. METHOD

The overview of mmPlace is illustrated in Fig. 2. The single-
chip radar provides the raw data IF signal as input to mmPlace.
The heatmap generation module performs range estimation and
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Fig. 2. mmPlace system consists of three main components: (1) heatmap generation, (2) feature extraction, and (3) heatmap concatenation. The heatmap generation
module performs range estimation and angle estimation on the IF signal to generate the range azimuth heatmap. The feature extraction module employs a spatial
encoder on the heatmap to produce the place descriptor. The heatmap concatenation module employs a rotating platform and concatenates the heatmaps over a full
rotation cycle.

angle estimation on the IF signal to generate the range azimuth
heatmap, which is discussed in detail in Section III-A. Next,
the feature extraction module employs a spatial encoder on the
heatmap to produce the place descriptor, which is explained in
Section III-B. Subsequently, mmPlace compares the similarity
between the place descriptor and the descriptors in the pre-built
map database to recognize the current place. Additionally, mm-
Place deploys a rotating platform and concatenates the heatmaps
over a full rotation cycle, as described in Section III-C.

A. Range Azimuth Heatmap Generation

The IF signal is the raw data of the single-chip radar for
generating the radar point cloud [23]. However, it is important to
note that the IF signal lacks spatial information and is unsuitable
for subsequent feature extraction. Additionally, the sparsity of
the single-chip radar point cloud also hinders its utility in fea-
ture extraction. Therefore, mmPlace performs sequential range
and angle estimations on the IF signal to generate the range
azimuth heatmap [24], which contains richer information than
the point cloud and encompasses spatial details not present in the
IF signal.

Range Estimation: The distance d between the object and
the single-chip radar can be obtained through the range estima-
tion [25]. The formula for calculating the distance d is given by:

fIF = Sτ =
S2d

c
⇒ d =

fIF c

2S
, (1)

where fIF is the frequency of the IF signal, S is the slope of
the millimeter wave chirp frequency change, τ is the round trip
time, and c is the speed of light.

Angle Estimation: The angle of arrival (AoA) θ between the
object and the single-chip radar can be determined through the
angle estimation [25]. The formula for calculating the AoA θ is
given by:

ω =
2π � d

λ
=

2πl sin (θ)

λ
⇒ θ = sin−1

(
λω

2πl

)
, (2)

where ω is the phase difference, l is the distance between the
two receiving antennas, and λ is the wavelength.

Our mmPlace sequentially performs range estimation and
angle estimation on the sampled IF signal (I). The formula for
calculating the range azimuth heatmap (H) is as follows:

H =

∣∣∣∣∣∣
NC∑
j=1

(
NR

F
k=1

(
NS

F
i=1

(I(i, j, k))

))∣∣∣∣∣∣ ,
I ∈ CNS×NC×NR , H ∈ RNS×NR , (3)

Fig. 3. Visualization of the range azimuth heatmap. The heatmap shows the
location of objects and indicates the power of the signal reflected back from
them. As an example, the bright spots in the heatmap correspond to the light
poles seen in the photo.

where F (·) represents the Fast Fourier Transform (FFT), NS is
the analog-to-digital (ADC) sampling rate, NC is the number
of chirps and NR is the number of antennas. Additionally, the
range azimuth heatmap (H) can be resized by cropping the NS

dimension and interpolating the zeros in the NR dimension of
the IF signal (I).

The range azimuth heatmap encompasses important spatial
data. As illustrated in Fig. 3, each cell within the heatmap
represents the strength of the reflected signal from an object
at a particular range and angle. Much like the visual image, the
range azimuth heatmap possesses the capability to detect objects
such as light poles.

B. Spatial Encoder-Based Feature Extraction

Taking into account the similarity between the range azimuth
heatmap and the Bird’s Eye View image, mmPlace employs a
spatial encoder to perform feature extraction from the heatmap,
resulting in the generation of the place descriptor. The spatial
encoder is shown in Fig. 4. Initially, the heatmap consists of two
dimensions: range and angle, and the convolution kernel is well-
suited for extracting information from this two-dimensional
space. Therefore, mmPlace uses four layers of the convolution
kernels with a (3× 3) kernel size and a (1× 1) stride to extract
information from the heatmap. Subsequently, for the extrac-
tion and synthesis of relevant information, mmPlace utilizes a
max-pooling kernel after the convolution kernel layer. Given
the distinct range and angle resolutions in the range azimuth
heatmap, max-pooling kernels with different sizes are applied:
4 in the range dimension and 2 in the angle dimension.
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Fig. 4. Overview of the spatial encoder. After obtaining the range azimuth
heatmap, the spatial encoder performs feature extraction on the heatmap to obtain
the place descriptor.

After performing feature extraction on the range azimuth
heatmap and obtaining the place descriptor, mmPlace compares
the similarity between the generated place descriptor and the
descriptors stored in the pre-built map database to recognize
the current place. For enhanced retrieval speed within the map
database, we utilize the Faiss [26] library.

In addition, we perform supervised training on the spatial
encoder, utilizing ground truth data from the state-of-the-art
LiDAR SLAM [27]. In this training process, we utilize the
triplet margin loss [28] to train the spatial encoder. This ensures
that locations closer in the real world are also closer in the
feature space, while locations further away in the real world
are correspondingly distant in the feature space. The calculation
of the loss function is as follows:

L =
∑
j

l
(
min
i

(
dE
(
f(q), f(pi)

))

−dE
(
f(q), f(nj)

)
+ α

)
, (4)

where l(·) is the hinge loss(l(x) = max(x, 0)), dE(·) is the
Euclidean distance, pi represents the positive samples, and nj

represents the negative samples.

C. Heatmap Concatenation Within a Rotation Cycle

Accurate place recognition is a challenging task for single-
chip radar in scenarios with rotational and lateral variations.
This challenge arises from the variability of antenna gains in
different directions and the limited FOV of the single-chip radar.
In particular, as the orientation of the single-chip radar changes,
there are fluctuations in the signal strength reflected back from
an object. In addition, there is only a limited FOV overlap of the
single-chip radar between the current query data and the candi-
date data stored in the pre-built map database in scenarios with
rotational and lateral variations. As a result, the performance of
the single-chip radar place recognition experiences a noticeable
degradation under such conditions, as shown in Table V.

To address this challenge, as shown in Fig. 5, we propose to
employ a rotating platform to capture single-chip radar data from
varying angles and concatenate the heatmaps from a complete
rotation cycle. For instance, if the rotational velocity is 150
degrees per second, and the frame rate of the single-chip radar is
10 Hz, we have 12 heatmaps within a rotation cycle. Therefore,
the heatmap concatenation not only can effectively compensate
for antenna gains but also significantly enhances the FOV of
the single-chip radar place recognition system, expanding it to

Fig. 5. Radar is deployed on a rotating platform. The rotating platform rotates
horizontally over 180 degrees at a speed of 150 degrees per second, which
effectively captures data from multiple angles.

Fig. 6. Process of range azimuth heatmap concatenation. Our mmPlace con-
catenates heatmaps across a rotation cycle, considering both range and angle
offsets. This results in a concatenated heatmap with an expanded FOV of up to
300 degrees.

300 degrees. Thus, mmPlace also has a larger FOV overlap in
scenarios involving rotational and lateral variations.

Next, we discuss how to concatenate the range azimuth
heatmaps within a cycle, which requires precise pixel-level
alignment. The rotating platform doesn’t consistently main-
tain a constant speed because it undergoes periodic starts and
stops during the rotation. As a result, directly concatenating
heatmaps at fixed step intervals can lead to a significant accumu-
lation of concatenation errors. Therefore, mmPlace concatenates
the heatmaps based on the relative pose between neighboring
frames, effectively eliminating the cumulative concatenation
errors. This method takes into consideration both the range offset
(roffset) and the angle offset (aoffset) for improved accuracy.
The process of heatmap concatenation is shown in Fig. 6. To
begin with, we calculate the range and angle offsets between
neighboring heatmap frames by minimizing the cosine similarity
in their overlapping regions. The formula is expressed as follows:

roffset[t] , aoffset[t] = argmin
r,a

s (o (Ht−1, Ht(r, a))) , (5)

where H is the range azimuth heatmap, H(r, a) means H
translates r and a pixels along the horizontal axis and the vertical
axis respectively, o(·) represents the overlap area of Ht−1 and
Ht(r, a), s(·) computes the cosine similarity of the overlap
area of Ht−1 and Ht(r, a), and roffset[t] and aoffset[t] are the
estimated results.

Secondly, the angle offset (aoffset) possesses a positive value
when the rotating platform undergoes clockwise rotation and a
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negative value during counterclockwise rotation. Therefore, by
assessing the sign of the angular offset, we can ascertain the
direction of rotation in the current frame. This enables us to
identify a complete rotation cycle, where the angular offset’s sign
remains constant throughout that cycle. The formula is presented
as follows:

aoffset[i−n]
⊕ aoffset[i−n+1]

⊕ · · · ⊕ aoffset[i] = 0, (6)

where n represents the number of heatmaps for a full rotation
cycle, and ⊕ is used to determine whether the signs of the
operands on both sides of ⊕ are equal. If they are equal, the
result is 0; if they differ, the result is 1. When conducting
chained calculations, determine whether the signs of all operands
involved in the computation are equal.

Finally, considering both the range and angle offsets, we con-
catenate the heatmap for the entire rotation cycle in a clockwise
direction. The formula is presented as follows:

H ′ =
n⋃

i=1

Hi

(
i∑
0

roffset[t] ,

i∑
0

aoffset[t]

)
, (7)

The resulting heatmap (H ′), derived from the concatenation
of multiple angles, not only compensates for antenna gains but
also extends the system’s FOV, thereby significantly enhancing
the system’s performance in scenarios involving rotational and
lateral variations.

It is worth noting that the rotating platform is quite affordable
at $90. As shown in Table I, the rotating platform is significantly
cheaper than a mechanical millimeter-wave radar and costs
less than one-third of AWR1642, the single-chip radar used in
mmPlace.

IV. EXPERIMENTS

In this section, we present the performance evaluation results
of mmPlace. Firstly, due to the absence of publicly available
place recognition datasets that encompass the single-chip radar
IF signal, we collect a dataset on the USTC campus, the city
roads surrounding the campus, and an underground parking
garage, called milliSonic, as presented Section IV-A. Next, we
provide the implementation details in Section IV-B. Following
that, we compare mmPlace ’s performance with the point cloud-
based and point cloud image-based methods in Section IV-C.
Then we present the performance of mmPlace utilizing heatmap
concatenation in rotational and lateral variation scenarios in
Section IV-D.

A. Our Millisonic Dataset

The existing publicly available radar datasets are not suitable
for our mmPlace. Indeed, Oxford [2] and nuScenes [3] don’t
include the IF signal, and RADIal [15] and RAMP-CNN [16]
are designed specifically for object detection. Consequently, we
collect the milliSonic dataset on the USTC campus, the city
roads surrounding the campus, and an underground parking
garage for the evaluation of mmPlace.

For data collection, we employ a mobile robot sensing plat-
form. As shown in Fig. 2, this platform is equipped with a
rotating platform, a TI AWR1642 single-chip radar sensor,2

a LUSTER FLRA camera sensor,3 and a RoboSense RS-32

2https://www.ti.com/tool/AWR1642BOOST
3https://lusterinc.com/product/series1552.html

TABLE II
STATISTICS OF MILLISONIC DATASET

LiDAR sensor.4 Thus, our milliSonic dataset includes the single-
chip radar IF signal, the LiDAR point cloud, and the camera
image. The LiDAR data offers precise ground truth position
information via LiDAR SLAM [27], while the camera data en-
ables observation of the robot’s surroundings. Furthermore, this
dataset has the potential to facilitate future research endeavors,
such as multi-sensor place recognition and single-chip radar
SLAM, among others.

As shown in Table II, the milliSonic dataset comprises ten
sequences, encompassing a total travel distance of 20,731 meters
and comprising 188,466 frames of data. The dataset is gath-
ered across the USTC campus, the city roads surrounding the
campus, and an underground parking garage. Furthermore, as
demonstrated in Fig. 7, we present data collection routes and
scenarios for the four sequences in the dataset. In the subsequent
experiments, we employ sequence 0 for training, while sequence
1 to 9 are utilized for testing. Notably, data collection routes for
sequence 1 and 2 exhibit a 30% overlap with sequence 0, while
routes for sequence 3 to 9 have no overlap with sequence 0.
Additionally, sequence 0 to 4 encompass rotational variations
from 0 to 10 degrees and lateral translation variations from 0 to
1 m, while sequence 5 to 9 involve rotational variations from 0 to
40 degrees and lateral translation variations from 0 to 3 meters.
Sequence 0 to 5 collect without the rotating platform, whereas
sequence 6 to 9 utilize the rotating platform. It’s worth noting
that sequence 7 includes data collected both with the rotating
platform (the first 6700 frames) and without the rotating platform
(the last 5984 frames).

B. Implementation Details

The spatial encoder of mmPlace is implemented using the
PyTorch framework and trained on an Nvidia RTX 3060 GPU.
For the network training, we use a batch size of 16 and employ
SGD with an initial learning rate of 0.01, momentum of 0.9,
and weight decay of 0.001. The learning rate is decayed by
0.5 every 5 epochs, and training continues until convergence,
up to a maximum of 50 epochs. Furthermore, following the
scale of AutoPlace [6] and KidnappedRadar [7], we consider
places in the database within a radius of 3 meters from the
query as true positives, while those outside a radius of 18 meters
are considered true negatives. Additionally, aligning with the

4https://www.robosense.cn/rslidar/RS-LiDAR-32
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Fig. 7. Data collection routes and scenarios for the four sequences in the
dataset. We collect the dataset on the USTC campus, the city roads surrounding
the campus, and an underground parking garage.

AutoPlace [6], we utilize 1 positive sample and 10 negative
samples for (4).

C. Evaluation in Normal Scenarios With IF Signal Data

In this subsection, we evaluate mmPlace in normal scenarios
(sequence 1 to 4) involving rotational variations from 0 to 10
degrees and lateral translation variations from 0 to 1 m. We begin
by comparing mmPlace with point cloud-based and point cloud
image-based methods. Subsequently, we evaluate mmPlace ’s
performance under different range azimuth heatmap sizes.

The existing radar place recognition methods [6], [7], [10],
[12], [22] utilizing point cloud employ two types of input, one
directly using the point cloud and the other using the point cloud
image, as discussed in Section II-C. To compare with these
methods that rely on point cloud or point cloud image, we also
process the IF signal to generate these two types of data. Firstly,
we convert the IF signal collected from the single-chip radar
into 2D point clouds with the method proposed in [29]. Next,
we generate the pseudo-3D point clouds by adding a pseudo-axis
z = 0. Finally, we obtain the point cloud images by projecting
the 2D points onto the image panel. Occupied pixels are assigned
a value of 1, while unoccupied pixels are assigned a value of 0.
Moreover, considering the sparse nature of the point cloud from
the single-chip radar, we follow the data processing approach in
[30] by concatenating 5 frames of the point cloud to generate a
denser point cloud.

IF Signal vs Point Cloud: We compare mmPlace with cur-
rent point cloud-based [10], [12], [22] and point cloud image-
based [6], [7] methods in sequence 1 to 4. These sequences
encompass rotational variations from 0 to 10 degrees and lateral
translation variations from 0 to 1 m. The evaluation of these
methods employs the standard metrics for place recognition,
including recall@N [20], maxF1 [7].

As shown in Table III, our IF signal-based mmPlace out-
performs both point cloud-based and point cloud image-based
methods significantly. Specifically, mmPlace achieves a 39.35%
and 30.93% higher recall@1 than ScanContext (the best point
cloud-based method) and AutoPlace (the best point cloud
image-based method), respectively. Our mmPlace achieves up
to 88.39% recall@1, while ScanContext and AutoPlace only
achieve 49.04% and 57.46% recall@1, respectively. While point
cloud-based and point cloud image-based methods prove effec-
tive with mechanical radars like CTS350-X or when employ-
ing five single-chip radars such as ARS408, their performance
diminishes when applied to a low-cost single-chip radar. The
poor performance of these methods is attributed to the sparse
point cloud data of a low-cost single-chip radar, which makes it
difficult to extract valid scenario information for place recogni-
tion. Whereas, mmPlace makes full use of the information-rich
IF signal data for place recognition, thus outperforming other
point could-based and point cloud image-based methods signifi-
cantly, as discussed in Section III-A and Section III-B. This also
indicates that point cloud-based and point cloud image-based
methods are not suitable for low-cost single-chip radar, such as
AWR1642, which is the radar utilized in our mmPlace and is
generally more budget-friendly (as shown in Table I).

Different Heatmap Sizes: We evaluate the effects of different
range azimuth heatmap sizes in sequence 1 to 4. We modify the
generated heatmap size by cropping and zero-padding on the IF
signal data, as discussed in Section III-A. As shown in Table IV,
we observe that the larger heatmap sizes result in improved
performance but at the expense of increased system latency. This
trade-off between performance and efficiency arises because the
larger heatmap contains more information, but it also demands
a higher time overhead. Notably, when enlarging the heatmap
size to 64× 1024, the improvements in performance become
marginal compared to the 64× 768 configuration, while incur-
ring a significantly higher computational overhead. Hence, We
opt for the 64× 768 heatmap size in our mmPlace.

D. Evaluation for Heatmap Concatenation

In this subsection, we evaluate mmPlace in difficult scenarios
(sequence 5 to 9) involving rotational variations from 0 to 40
degrees and lateral translation variations from 0 to 3 meters.
First, we evaluate mmPlace’s performance without heatmap
concatenation under different rotational and lateral variations.
Afterward, we compare different heatmap concatenation meth-
ods in these difficult scenarios.

Different Rotational and Lateral Variations: We evaluate the
influence of different rotations and lateral translation in sequence
5, without utilizing the heatmap concatenation. This sequence
encompasses rotational variations from 0 to 40 degrees and
lateral translation variations from 0 to 3 meters. As shown in
Table V, the system performance declines as the rotation angle
and lateral distance increase. This issue mainly arises from the
limited overlap between the current query data and the candidate
data stored in the pre-built map database in scenarios with
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TABLE III
PERFORMANCE OF MMPLACE AND POINT CLOUD-BASED METHODS AND POINT CLOUD IMAGE-BASED METHODS

TABLE IV
COMPARISON OF DIFFERENT RANGE AZIMUTH HEATMAP SIZES

TABLE V
PERFORMANCE OF MMPLACE WITHOUT HEATMAP CONCATENATION UNDER

DIFFERENT ROTATIONAL AND LATERAL VARIATIONS

rotational and lateral variations, as discussed in Section III-C.
To address this issue, we propose to employ a rotating platform
and concatenate the heatmaps in a rotation cycle to enhance the
system’s FOV.

Comparison of Different Concatenation Methods: We con-
duct a comparison of different range azimuth heatmap concate-
nation methods, including no concatenation, fixed step-based
heatmap concatenation, and relative pose-based heatmap con-
catenation in sequence 6 to 9. These sequences encompass
rotational variations from 0 to 40 degrees and lateral translation
variations from 0 to 3 meters.

As shown in Table VI, our proposed relative pose-based
heatmap concatenation achieves 87.37% racall@1 in scenar-
ios involving rotational and lateral variations. Specifically, it
achieves 18.35% and 16.01% higher recall@1 than no con-
catenation in scenarios with 10 to 40 degrees of rotation and
1 to 3 meters of lateral translation, respectively. Also in these
scenarios, our mmPlace achieves up to 83.48% and 84.47%
racall@1, which outperforms fixed step-based concatenation

Fig. 8. Visualisation of different heatmap concatenation methods.
(a) Illustrates the heatmap without concatenation, while (b) and (c) illustrate
the heatmap concatenated with fixed step size and the heatmap concatenated
based on relative pose, respectively.

by 4.25% and 6.78%, respectively. This is because the relative
pose-based heatmap concatenation not only enables pixel-level
alignment of the heatmaps in a rotation cycle but also enlarges
the FOV overlapping area in rotational and lateral variation
scenarios, as discussed in Section III-C. Again, as shown in
Fig. 8, the heatmap concatenated based on relative pose has a
larger FOV than the initial heatmap and is more accurate than
the heatmap concatenated with fixed step size.
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TABLE VI
COMPARISON OF DIFFERENT HEATMAP CONCATENATION METHODS IN SCENARIOS (SEQUENCE 6 TO 9) INVOLVING ROTATIONAL VARIATIONS FROM 0 TO 40

DEGREES AND LATERAL TRANSLATION VARIATIONS FROM 0 TO 3 METERS

V. CONCLUSION

In this letter, we propose mmPlace, a robust place recognition
system based on a low-cost single-chip radar. Since point cloud-
based and point cloud image-based methods perform poorly due
to the sparse point cloud of the single-chip radar, mmPlace starts
with the IF signal. Firstly, mmPlace generates range azimuth
heatmap by performing range and angle estimation processing
on the IF signal. Then, a spatial encoder is used for feature
extraction on the heatmap. Additionally, mmPlace deploys a
rotating platform and concatenates heatmaps in a rotation cycle
to enhance the system’s performance in scenarios involving ro-
tational and lateral variations. We collect the milliSonic dataset
on the USTC campus, the city roads surrounding the campus,
and an underground parking garage. Our experiments on the mil-
liSonic dataset demonstrate that mmPlace surpasses both point
cloud-based and point cloud image-based methods. The heatmap
concatenation enhances the system’s performance in scenarios
encompassing rotational variations from 0 to 40 degrees and
lateral translation variations from 0 to 3 meters.
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[19] I. Namatēvs, “Deep convolutional neural networks: Structure, feature ex-
traction and training,” Inf. Technol. Manage. Sci., vol. 20, no. 1, pp. 40–47,
2017.

[20] R. Arandjelovic, P. Gronát, A. Torii, T. Pajdla, and J. Sivic, “NetVLAD:
CNN architecture for weakly supervised place recognition,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 40, no. 6, pp. 1437–1451, Jun. 2018.

[21] S. Hausler, S. Garg, M. Xu, M. Milford, and T. Fischer, “Patch-NetVLAD:
Multi-scale fusion of locally-global descriptors for place recognition,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 14136–
14147.

[22] L. He, X. Wang, and H. Zhang, “M2DP: A novel 3D point cloud descriptor
and its application in loop closure detection,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robot. Syst., 2016, pp. 231–237.

[23] C. Iovescu and S. Rao, “The fundamentals of millimeter wave sensors,”
Texas Instrum., pp. 1–8, 2017.

[24] J. Kim, Y. Kim, and D. Kum, “Low-level sensor fusion network for
3D vehicle detection using radar range-azimuth heatmap and monocular
image,” in Proc. Asian Conf. Comput. Vis., 2020, pp. 388–402.

[25] X. Li, X. Wang, Q. Yang, and S. Fu, “Signal processing for TDM
MIMO FMCW millimeter-wave radar sensors,” IEEE Access, vol. 9,
pp. 167959–167971, 2021.

[26] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with
GPUs,” IEEE Trans. Big Data, vol. 7, no. 3, pp. 535–547, Jul. 2021.

[27] Y. Duan, J. Peng, Y. Zhang, J. Ji, and Y. Zhang, “PFilter: Building persistent
maps through feature filtering for fast and accurate LiDAR-based SLAM,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2022, pp. 11087–11093.

[28] J. Wang et al., “Learning fine-grained image similarity with deep ranking,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit, 2014, pp. 1386–1393.

[29] E. Pan, J. Tang, D. Kosaka, R. Yao, and A. Gupta, “OpenRadar,” 2019.
[Online]. Available: https://github.com/presenseradar/openradar

[30] J.-T. Lin, D. Dai, and L. V. Gool, “Depth estimation from monocular
images and sparse radar data,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot.
Syst., 2020, pp. 10233–10240.

Authorized licensed use limited to: Zhejiang University. Downloaded on August 04,2025 at 06:55:57 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/presenseradar/openradar


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


